Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.396
Filter
1.
2.
Ann Clin Microbiol Antimicrob ; 23(1): 70, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113073

ABSTRACT

BACKGROUND: The increased resistance rate of Salmonella to third-generation cephalosporins represented by ceftriaxone (CRO) may result in the failure of the empirical use of third-generation cephalosporins for the treatment of Salmonella infection in children. The present study was conducted to evaluate a novel method for the rapid detection of CRO-resistant Salmonella (CRS). METHODS: We introduced the concept of the ratio of optical density (ROD) with and without CRO and combined it with matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) to establish a new protocol for the rapid detection of CRS. RESULTS: The optimal incubation time and CRO concentration determined by the model strain test were 2 h and 8 µg/ml, respectively. We then conducted confirmatory tests on 120 clinical strains. According to the receiver operating characteristic curve analysis, the ROD cutoff value for distinguishing CRS and non-CRS strains was 0.818 [area under the curve: 1.000; 95% confidence interval: 0.970-1.000; sensitivity: 100.00%; specificity: 100%; P < 10- 3]. CONCLUSIONS: In conclusion, the protocol for the combined ROD and MALDI-TOF MS represents a rapid, accurate, and economical method for the detection of CRS.


Subject(s)
Anti-Bacterial Agents , Ceftriaxone , Microbial Sensitivity Tests , Salmonella Infections , Salmonella , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Ceftriaxone/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Salmonella/drug effects , Salmonella Infections/microbiology , Microbial Sensitivity Tests/methods , Drug Resistance, Bacterial , Sensitivity and Specificity , ROC Curve
3.
Cell Res ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103524

ABSTRACT

The hierarchical packaging of chromatin fibers plays a critical role in gene regulation. The 30-nm chromatin fibers, a central-level structure bridging nucleosomal arrays to higher-order organizations, function as the first level of transcriptional dormant chromatin. The dynamics of 30-nm chromatin fiber play a crucial role in biological processes related to DNA. Here, we report a 3.6-angstrom resolution cryogenic electron microscopy structure of H5-bound dodecanucleosome, i.e., the chromatin fiber reconstituted in the presence of linker histone H5, which shows a two-start left-handed double helical structure twisted by tetranucleosomal units. An atomic structural model of the H5-bound chromatin fiber, including an intact chromatosome, is built, which provides structural details of the full-length linker histone H5, including its N-terminal domain and an HMG-motif-like C-terminal domain. The chromatosome structure shows that H5 binds the nucleosome off-dyad through a three-contact mode in the chromatin fiber. More importantly, the H5-chromatin structure provides a fine molecular basis for the intra-tetranucleosomal and inter-tetranucleosomal interactions. In addition, we systematically validated the physiological functions and structural characteristics of the tetranucleosomal unit through a series of genetic and genomic studies in Saccharomyces cerevisiae and in vitro biophysical experiments. Furthermore, our structure reveals that multiple structural asymmetries of histone tails confer a polarity to the chromatin fiber. These findings provide structural and mechanistic insights into how a nucleosomal array folds into a higher-order chromatin fiber with a polarity in vitro and in vivo.

4.
Clin Mol Hepatol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103994

ABSTRACT

Background: Intrahepatic cholangiocarcinoma (ICC) is a highly desmoplastic tumor with poor prognosis even after curative resection. We investigated the associations between the composition of the ICC stroma and immune cell infiltration and aimed to develop a stromal-immune signature to predict prognosis in surgically treated ICC. Patients and methods: We recruited 359 ICC patients and performed immunohistochemistry to detect α-smooth muscle actin (α-SMA), CD3, CD4, CD8, Foxp3, CD68, and CD66b. Aniline was used to stain collagen deposition. Survival analyses were performed to detect prognostic values of these markers. Recursive partitioning for a discrete-time survival tree was applied to define a stromal-immune signature with distinct prognostic value. We delineated an integrated stromal-immune signature based on immune cell subpopulations and stromal composition to distinguish subgroups with different recurrence-free survival (RFS) and overall survival (OS) time. Results: We defined four major patterns of ICC stroma composition according to the distributions of α-SMA and collagen: dormant (α-SMAlow/collagenhigh), fibrogenic (α-SMAhigh/collagenhigh), inert (α-SMAlow/collagenlow), and fibrolytic (α-SMAhigh/collagenlow). The stroma types were characterized by distinct patterns of infiltration by immune cells. We divided patients into six classes. Class I, characterized by high CD8 expression and dormant stroma, displayed the longest RFS and OS, whereas Class VI, characterized by low CD8 expression and high CD66b expression, displayed the shortest RFS and OS. The integrated stromal-immune signature was consolidated in a validation cohort. Conclusion: We developed and validated a stromal-immune signature to predict prognosis in surgically treated ICC. These findings provide new insights into the stromal-immune response to ICC.

5.
PLoS Pathog ; 20(8): e1012448, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39146384

ABSTRACT

The chemokine co-receptors CXCR4 and CCR5 mediate HIV entry and signal transduction necessary for viral infection. However, to date only the CCR5 antagonist maraviroc is approved for treating HIV-1 infection. Given that approximately 50% of late-stage HIV patients also develop CXCR4-tropic virus, clinical anti-HIV CXCR4 antagonists are needed. Here, we describe a novel allosteric CXCR4 antagonist TIQ-15 which inhibits CXCR4-tropic HIV-1 infection of primary and transformed CD4 T cells. TIQ-15 blocks HIV entry with an IC50 of 13 nM. TIQ-15 also inhibits SDF-1α/CXCR4-mediated cAMP production, cofilin activation, and chemotactic signaling. In addition, TIQ-15 induces CXCR4 receptor internalization without affecting the levels of the CD4 receptor, suggesting that TIQ-15 may act through a novel allosteric site on CXCR4 for blocking HIV entry. Furthermore, TIQ-15 did not inhibit VSV-G pseudotyped HIV-1 infection, demonstrating its specificity in blocking CXCR4-tropic virus entry, but not CXCR4-independent endocytosis or post-entry steps. When tested against a panel of clinical isolates, TIQ-15 showed potent inhibition against CXCR4-tropic and dual-tropic viruses, and moderate inhibition against CCR5-tropic isolates. This observation was followed by a co-dosing study with maraviroc, and TIQ-15 demonstrated synergistic activity. In summary, here we describe a novel HIV-1 entry inhibitor, TIQ-15, which potently inhibits CXCR4-tropic viruses while possessing low-level synergistic activities against CCR5-tropic viruses. TIQ-15 could potentially be co-dosed with the CCR5 inhibitor maraviroc to block viruses of mixed tropisms.


Subject(s)
HIV Infections , HIV-1 , Receptors, CXCR4 , Virus Internalization , Humans , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/metabolism , HIV-1/drug effects , HIV-1/physiology , Virus Internalization/drug effects , HIV Infections/drug therapy , HIV Infections/virology , CD4-Positive T-Lymphocytes/virology , CD4-Positive T-Lymphocytes/drug effects , HIV Fusion Inhibitors/pharmacology , Maraviroc/pharmacology , Triazoles/pharmacology , Anti-HIV Agents/pharmacology , HEK293 Cells
6.
Reprod Sci ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174853

ABSTRACT

Oligozoospermia is an important cause of male infertility for which treatment options are limited. Spermatogenesis is complex, and the causes of oligozoospermia remain largely unknown. Because genetic mutations are important factors of oligozoospermia pathogenesis, our study aimed to explore the genetic causes of oligozoospermia. Whole- exome sequencing (WES) was performed on one proband from a Chinese family who was diagnosed with oligozoospermia. The pathogenic mutations were confirmed by Sanger sequencing, and a minigene assay was used to determine the effect of the identified splicing mutation. We identified a novel compound heterozygous mutation in the TDRD9 gene, comprising a splicing mutation (c.1115 + 3A > G) and a frameshift mutation (c.958delC), in the proband; neither of these mutations were found in 50 unrelated healthy people. In addition, a minigene assay demonstrated that the frameshift produced partially truncated protein, and the splicing mutation led to a frameshift mutation and premature termination due to abnormal alternative splicing of TDRD9. These findings indicate that deleterious compound heterozygous mutation in TDRD9 could lead to oligozoospermia, highlighting the crucial role of TDRD9 in spermatogenesis and further clarifying the genetic causes of male infertility resulting from oligozoospermia. Our study expands the spectrum of TDRD9-related phenotypes and provides a new specific target for future genetic counseling.

7.
Int Immunopharmacol ; 141: 112930, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39146786

ABSTRACT

Cardiovascular diseases (CVDs) represent a significant public health concern because of their associations with inflammation, oxidative stress, and abnormal remodeling of the heart and blood vessels. In this review, we discuss the intricate interplay between mitochondria-associated membranes (MAMs) and cardiovascular inflammation, highlighting their role in key cellular processes such as calcium homeostasis, lipid metabolism, oxidative stress management, and ERS. We explored how these functions impact the pathogenesis and progression of various CVDs, including myocardial ischemia-reperfusion injury, atherosclerosis, diabetic cardiomyopathy, cardiovascular aging, heart failure, and pulmonary hypertension. Additionally, we examined current therapeutic strategies targeting MAM-related pathways and proteins, emphasizing the potential of MAMs as therapeutic targets. Our review aims to provide new insights into the mechanisms of cardiovascular inflammation and propose novel therapeutic approaches to improve cardiovascular health outcomes.

8.
Heliyon ; 10(15): e34936, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39157338

ABSTRACT

Objective: To explore the effective targets of Celecoxib in the treatment of heterotopic ossification using network pharmacology methods. Methods: Potential molecules related to heterotopic ossification were obtained by retrieving the GEO and CTD databases and intersecting them. Potential binding targets of Celecoxib were acquired from the STITCH database. A protein-protein interaction network was constructed between potential binding targets of Celecoxib and potential related molecules of heterotopic ossification using the STRING database. Molecules in the protein-protein interaction network were further analyzed using GO and KEGG enrichment analysis in R software, followed by enrichment analysis of active molecules in the Celecoxib-heterotopic ossification target dataset. Hub genes were selected based on the "degree" value and enrichment within the protein-protein interaction network. The binding affinity of hub genes to Celecoxib was observed using molecular docking techniques. Finally, in vitro experiments were conducted to validate the effectiveness of hub genes and explore their regulatory role in the progression of heterotopic ossification. Additionally, the therapeutic effect of Celecoxib, which modulates the expression of the hub genes, was investigated in the treatment of heterotopic ossification. Results: 568 potential molecules related to heterotopic ossification and 76 potential binding targets of Celecoxib were identified. After intersection, 13 potential functional molecules in Celecoxib's treatment of heterotopic ossification were obtained. KEGG analysis suggested pathways such as Rheumatoid arthritis, NF-kappa B signaling pathway, Pathways in cancer, Antifolate resistance, MicroRNAs in cancer play a role in the treatment of heterotopic ossification by Celecoxib. Further enrichment analysis of the 13 potential functional molecules identified 5 hub genes: IL6, CCND1, PTGS2, IGFBP3, CDH1. Molecular docking results indicated that Celecoxib displayed excellent binding affinity with CCND1 among the 5 hub genes. Experimental validation found that CCND1 is highly expressed in the progression of heterotopic ossification, promoting heterotopic ossification in the early stages and inhibiting it in the later stages, with Celecoxib's treatment of heterotopic ossification depending on CCND1. Conclusion: In the process of treating heterotopic ossification with Celecoxib, immune and inflammatory signaling pathways play a significant role. The therapeutic effect of Celecoxib on heterotopic ossification depends on the hub gene CCND1, which plays different roles at different stages of the progression of heterotopic ossification, ultimately inhibiting the occurrence of heterotopic ossification.

9.
Front Plant Sci ; 15: 1400301, 2024.
Article in English | MEDLINE | ID: mdl-39135652

ABSTRACT

Introduction: Members of the plant-specific B3 transcription factor superfamily play crucial roles in various plant growth and developmental processes. Despite numerous valuable studies on B3 genes in other species, little is known about the B3 superfamily in pearl millet. Methods and results: Here, through comparative genomic analysis, we identified 70 B3 proteins in pearl millet and categorized them into four subfamilies based on phylogenetic affiliations: ARF, RAV, LAV, and REM. We also mapped the chromosomal locations of these proteins and analyzed their gene structures, conserved motifs, and gene duplication events, providing new insights into their potential functional interactions. Using transcriptomic sequencing and real-time quantitative PCR, we determined that most PgB3 genes exhibit upregulated expression under drought and high-temperature stresses, indicating their involvement in stress response regulation. To delve deeper into the abiotic stress roles of the B3 family, we focused on a specific gene within the RAV subfamily, PgRAV-04, cloning it and overexpressing it in tobacco. PgRAV-04 overexpression led to increased drought sensitivity in the transgenic plants due to decreased proline levels and peroxidase activity. Discussion: This study not only adds to the existing body of knowledge on the B3 family's characteristics but also advances our functional understanding of the PgB3 genes in pearl millet, reinforcing the significance of these factors in stress adaptation mechanisms.

10.
J Clin Oncol ; : JCO2401125, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137386

ABSTRACT

PURPOSE: Nivolumab plus relatlimab and nivolumab plus ipilimumab have been approved for advanced melanoma on the basis of the phase II/III RELATIVITY-047 and phase III CheckMate 067 trials, respectively. As no head-to-head trial comparing these regimens exists, an indirect treatment comparison was conducted using patient-level data from each trial. METHODS: Inverse probability of treatment weighting (IPTW) adjusted for baseline characteristic differences. Minimum follow-ups (RELATIVITY-047, 33 months; CheckMate 067, 36 months) were selected to best align assessments. Outcomes included progression-free survival (PFS), confirmed objective response rate (cORR), and melanoma-specific survival (MSS) per investigator; overall survival (OS); and treatment-related adverse events (TRAEs). A Cox regression model compared PFS, OS, and MSS. A logistic regression model compared cORRs. Subgroup analyses were exploratory. RESULTS: After IPTW, key baseline characteristics were balanced for nivolumab plus relatlimab (n = 339) and nivolumab plus ipilimumab (n = 297). Nivolumab plus relatlimab demonstrated similar PFS (hazard ratio [HR], 1.08 [95% CI, 0.88 to 1.33]), cORR (odds ratio, 0.91 [95% CI, 0.73 to 1.14]), OS (HR, 0.94 [95% CI, 0.75 to 1.19]), and MSS (HR, 0.86 [95% CI, 0.67 to 1.12]) to nivolumab plus ipilimumab. Subgroup comparisons showed larger numerical differences favoring nivolumab plus ipilimumab with acral melanoma, BRAF-mutant melanoma, and lactate dehydrogenase >2 × upper limit of normal, but were limited by small samples. Nivolumab plus relatlimab was associated with fewer grade 3-4 TRAEs (23% v 61%) and any-grade TRAEs leading to discontinuation (17% v 41%). CONCLUSION: Nivolumab plus relatlimab demonstrated similar efficacy to nivolumab plus ipilimumab in the overall population, including most-but not all-subgroups, and improved safety in patients with untreated advanced melanoma. Results should be interpreted with caution.

11.
Gene ; 931: 148867, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39168258

ABSTRACT

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is a common malignancy that often develops unnoticed. Typically, these tumors are identified at advanced stages, resulting in a relatively low chance of successful treatment. Anoikis serves as a natural defense against the spread of tumor cells, meaning circumventing anoikis can effectively inhibit tumor metastasis. Nonetheless, studies focusing on anoikis in the context of HNSCC remain scarce. METHODS: Anoikis-related genes (ARGs) were identified by using the GeneCards and Harmonizome databases. Expression data of these genes and relevant clinical features were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A LASSO regression and a prognostic risk score model were developed to determine their prognostic significance. The analysis included the use of the CIBERSORT algorithm to quantify immune and stromal cell presence. Furthermore, in vitro and in vivo, we confirmed the expression and functional roles of proteins and mRNA of genes independently predictive of prognosis. RESULTS: The study identified eight genes linked to prognosis (ANXA5, BAK1, CDKN2A, PPARG, CCR7, MAPK11, CRYAB, CRYBA1) and developed a prognostic model that effectively forecasts the survival outcomes for patients with HNSCC. A higher survival likelihood is associated with lower risk scores. In addition, a significant relationship was found between immune and risk score, and ANXA5 deletion promoted the killing of HNSCC cells by activated CD8+ T cells. During the screening process, 65 different chemotherapeutic drugs were found to have significant differences in IC50 values when comparing high- and low-risk categories. ANXA5 emerged as a gene with independent prognostic significance, exhibiting notably elevated protein and mRNA levels in HNSCC tissue compared to non-tumorous tissue. The suppression of ANXA5 gene activity resulted in a substantial decrease in both the growth and mobility of HNSCC cells. Animal model experiments demonstrated that inhibiting ANXA5 suppressed HNSCC growth and migration in vivo. CONCLUSION: Through bioinformatics, a prognostic risk model of high precision was developed, offering valuable insights into the survival rates and immune responses in patients with HNSCC. ANXA5 is highlighted as a significant prognostic factor among the identified genes, indicating its promise as a potential therapeutic target for those with HNSCC.

12.
Virulence ; 15(1): 2396477, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39185671

ABSTRACT

Staphylococcus argenteus is a novel species within the Staphylococcus aureus complex and can cause serious bloodstream infections (BSIs) in humans, which have been mainly reported in adults, especially the elderly. In this study, we analyzed the molecular characterization of a strain of S. argenteus (22WJ8192) isolated from the peripheral vein blood sample of a seven-month-old female infant in Eastern China. The 22WJ8192 belonged to sequence type (ST)2250 and harbored six antibiotic-resistance genes and 53 virulence genes and was resistant to penicillin. Additionally, we conducted a comparative analysis of the molecular characteristics of S. argenteus sourced from various origins within the dataset, predominantly from the National Center for Biotechnology Information Collection (NCBI) genome database. Antibiotic-resistance genes blaR1, blaI_of_Z, blaZ, fosB-Saur, tet(L), aph(3")-IIIa, mecA, and dfrG were more prevalent among the strains of human origin. Virulence genes lukF-PV, sak, sdrE, scn, sdrC, and sdrD were more prevalent among strains of human origin. The presence of antibiotic-resistance genes blaR1, blaI_of_Z, blaZ, fosB-Saur, and aph(3")-IIIa in strain 22WJ8192 was also more common among strains of human origin in the dataset. Conversely, the antibiotic-resistance genes tet(L), mecA, and dfrG, typically found in strains of human origin, were not detected in 22WJ8192. Additionally, virulence genes lukF-PV, sak, sdrE, scn, sdrC, and sdrD present in 22WJ8192 exhibited a higher prevalence among strains of human origin in the dataset. In conclusion, this study emphasizes the potential of S. argenteus ST2250 to induce severe bloodstream infections in infants, shedding light on the molecular characteristics of this strain.


Subject(s)
Anti-Bacterial Agents , Staphylococcal Infections , Staphylococcus , Virulence Factors , Humans , China/epidemiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Female , Staphylococcus/genetics , Staphylococcus/drug effects , Staphylococcus/isolation & purification , Staphylococcus/classification , Staphylococcus/pathogenicity , Infant , Virulence Factors/genetics , Virulence/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Hospitals , Bacteremia/microbiology , Bacteremia/epidemiology
13.
Nat Commun ; 15(1): 7335, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187539

ABSTRACT

All-perovskite tandem solar cells have shown great promise in breaking the Shockley-Queisser limit of single-junction solar cells. However, the efficiency improvement of all-perovskite tandem solar cells is largely hindered by the surface defects induced non-radiative recombination loss in Sn-Pb mixed narrow bandgap perovskite films. Here, we report a surface reconstruction strategy utilizing a surface polishing agent, 1,4-butanediamine, together with a surface passivator, ethylenediammonium diiodide, to eliminate Sn-related defects and passivate organic cation and halide vacancy defects on the surface of Sn-Pb mixed perovskite films. Our strategy not only delivers high-quality Sn-Pb mixed perovskite films with a close-to-ideal stoichiometric ratio surface but also minimizes the non-radiative energy loss at the perovskite/electron transport layer interface. As a result, our Sn-Pb mixed perovskite solar cells with bandgaps of 1.32 and 1.25 eV realize power conversion efficiencies of 22.65% and 23.32%, respectively. Additionally, we further obtain a certified power conversion efficiency of 28.49% of two-junction all-perovskite tandem solar cells.

14.
Acta Pharmacol Sin ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054339

ABSTRACT

Sjogren's syndrome (SS) is a chronic, progressive autoimmune disorder characterized by gland fibrosis. We previously found a close correlation between gland fibrosis and the expression of G protein-coupled receptor kinase 2 (GRK2). In this study we explored the pathological and therapeutic significance of GRK2 in SS. Submandibular gland (SMG) antigen-induced SS mouse model was established in WT and GRK2+/- mice. We showed that the expression levels of GRK2 were significantly up-regulated in glandular tissue and positively correlated with fibrotic morphology in SS patients and mice. Hemizygous knockout of GRK2 significantly inhibited the gland fibrosis. In mouse salivary gland epithelial cells (SGECs), we demonstrated that GRK2 interacted with Smad2/3 to positively regulate the activation of TGF-ß-Smad signaling with a TGF-ß-GRK2 positive feedback loop contributing to gland fibrosis. Hemizygous knockout of GRK2 attenuated TGF-ß-induced collagen I production in SGECs in vitro and hindered gland fibrosis in murine SS though preventing Smad2/3 nuclear translocation. Around 28 days post immunization with SMG antigen, WT SS mice were treated with a specific GRK2 inhibitor paroxetine (Par, 5 mg·kg-1·d-1, i.g. for 19 days). We found that Par administration significantly attenuated gland fibrosis and alleviated the progression of SS in mice. We conclude that genetic knockdown or pharmacological inhibition of GRK2 significantly attenuates gland fibrosis and alleviates the progression of SS. GRK2 binds to Smad2/3 and positively regulates the activation of TGF-ß-Smad signaling. A TGF-ß-GRK2 positive feedback loop contributes to gland fibrosis. Our research points out that GRK2 could be a promising therapeutic target for treating SS.

16.
RSC Adv ; 14(32): 23204-23214, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39045398

ABSTRACT

Medicinal plants, increasingly utilized in functional foods, possess potent therapeutic properties and health-promoting functions, with carbohydrates playing a crucial role and exhibiting a range of effects, such as antioxidant, antitumor, immune-enhancing, antibacterial, anticoagulant, and hypoglycemic activities. However, comprehensively, accurately, rapidly, and economically assessing the quality of carbohydrate components is challenging due to their diverse and complex nature. Additionally, the purification and identification of carbohydrates also guarantee related efficacy research. This paper offers a thorough review of research progress carried out by both domestic and international scholars in the last decade on extracting, purifying, separating, identifying, and determining the content of carbohydrate components from functional foods, which are mainly composed of medicinal plants, and also explores the potential for achieving comprehensive quantitative analysis and evaluating structure-activity relationships of carbohydrate components. These findings aim to serve as a valuable reference for the future development and application of natural carbohydrate components in functional food and medicine.

17.
Mol Neurobiol ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031326

ABSTRACT

Endemic cretinism (EC) is one of the most severe iodine deficiency disorders, leading to typical symptoms such as neurodevelopmental impairments or mental deficits. In addition to environmental factors, the pathogenesis of its genetic contribution remains unclear. The study revealed the differential expression profiles of long non-coding RNA(lncRNA) and messenger RNA(mRNA) based on high-throughput RNA-seq. GO and KEGG analyses were used to annotate the function and pathway of differentially expressed (DE) mRNA and co-expressed mRNA. The protein-protein interaction(PPI) network was established. The expression levels of three lncRNAs and six mRNAs were validated by quantitative real-time PCR analysis (qRT-PCR) and subjected to correlation analysis. Compared to controls, a total of 864 lncRNAs and 393 mRNAs were differentially expressed. The PPI network had 149 nodes and 238 edges, and three key protein-coding genes were observed. Levels of LINC01220 and target mRNA IDO1 were statistically elevated in EC patients. Differentially expressed lncRNA may be a new potential player in EC. LINC01220 and IDO1 might interact with each other to participate in EC. The biological process of regulation of postsynaptic membrane potential and the Rap1 signaling pathway might exert a regulating role in the pathophysiological process of EC. Our findings could provide more theoretical and experimental evidence for investigating the pathophysiological mechanisms of EC.

18.
J Nanobiotechnology ; 22(1): 438, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39061089

ABSTRACT

Decellularized extracellular matrix hydrogel (ECM hydrogel), a natural material derived from normal tissue with unique biocompatibility properties, is widely used for tissue repair. However, there are still problems such as poor biological activity and insufficient antimicrobial property. To overcome these drawbacks, fibroblast growth factor 2 (FGF 2) containing exosome (exoFGF 2) was prepared to increase the biological activity. Furthermore, the antimicrobial capacity of ECM hydrogel was optimised by using copper ions as a ligand-bonded cross-linking agent. The decellularized extracellular matrix hydrogel, intricately cross-linked with copper ions through ligand bonds and loaded with FGF 2 containing exosome (exoFGF 2@ECM/Cu2+ hydrogel), has demonstrated exceptional biocompatibility and antimicrobial properties. In vitro, exoFGF 2@ECM/Cu2+ hydrogel effectively promoted cell proliferation, migration, antioxidant and inhibited bacterial growth. In vivo, the wound area of rat treated with exoFGF 2@ECM/Cu2+ hydrogels were significantly smaller than that of other groups at Day 5 (45.24% ± 3.15%), Day 10 (92.20% ± 2.31%) and Day 15 (95.22% ± 1.28%). Histological examination showed that exoFGF 2@ECM/Cu2+ hydrogels promoted angiogenesis and collagen deposition. Overall, this hydrogel has the potential to inhibit bacterial growth and effectively promote wound healing in a variety of clinical applications.


Subject(s)
Cell Proliferation , Exosomes , Extracellular Matrix , Fibroblast Growth Factor 2 , Hydrogels , Skin , Wound Healing , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 2/chemistry , Exosomes/chemistry , Exosomes/metabolism , Rats , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Wound Healing/drug effects , Skin/drug effects , Cell Proliferation/drug effects , Rats, Sprague-Dawley , Humans , Copper/chemistry , Copper/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Male , Mice , Cell Movement/drug effects , Tissue Engineering/methods
19.
Int J Oncol ; 65(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-39054958

ABSTRACT

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that a possible error had been identified in the selection of images in Figs. 1 and/or 7. After having consulted their original data, the authors realized that an erroneous image appeared on p. 593, in Fig. 7F [the 'Hep­G2 / IL­8 (5 ng/ml)' data panel], where part of this figure panel was overlapping with an image on p. 589 in Fig. 1C (the 'Hep­G2 Co­cultured' data panel). After a thorough review and verification of the data by all the authors, they have confirmed that the original data presented in the paper were accurate, and the error was solely due to the selection of an incorrect image during figure arrangement. The authors confirm that this mistake in image selection did not affect the overall conclusions reported in the article. A corrected version of Fig. 7, including the correct data for the 'Hep­G2 / IL­8 (5 ng/ml)' panel in Fig. 7F, is shown on the next page. The authors are grateful to the Editor of International Journal of Oncology for granting them the opportunity to publish this Corrigendum. All the authors agree to the publication of this Corrigendum, and apologize to the readership for any inconvenience caused. [International Journal of Oncology 46: 587­596, 2015; DOI: 10.3892/ijo.2014.2761].

20.
Front Pharmacol ; 15: 1392123, 2024.
Article in English | MEDLINE | ID: mdl-38962302

ABSTRACT

Introduction: Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Due to its complex pathogenesis, new therapeutic agents are urgently needed. Orthosiphon aristatus (Blume) Miq., commonly known as kidney tea, is widely used in DN treatment in China. However, the mechanisms have not been fully elucidated. Methods: We used db/db mice as the DN model and evaluated the efficacy of kidney tea in DN treatment by measuring fasting blood glucose (FBG), serum inflammatory cytokines, renal injury indicators and histopathological changes. Furthermore, 16S rDNA gene sequencing, untargeted serum metabolomics, electron microscope, ELISA, qRT-PCR, and Western blotting were performed to explore the mechanisms by which kidney tea exerted therapeutic effects. Results: Twelve polyphenols were identified from kidney tea, and its extract ameliorated FBG, inflammation and renal injury in DN mice. Moreover, kidney tea reshaped the gut microbiota, reduced the abundance of Muribaculaceae, Lachnoclostridium, Prevotellaceae_UCG-001, Corynebacterium and Akkermansia, and enriched the abundance of Alloprevotella, Blautia and Lachnospiraceae_NK4A136_group. Kidney tea altered the levels of serum metabolites in pathways such as ferroptosis, arginine biosynthesis and mTOR signaling pathway. Importantly, kidney tea improved mitochondrial damage, increased SOD activity, and decreased the levels of MDA and 4-HNE in the renal tissues of DN mice. Meanwhile, this functional tea upregulated GPX4 and FTH1 expression and downregulated ACSL4 and NCOA4 expression, indicating that it could inhibit ferroptosis in the kidneys. Conclusion: Our findings imply that kidney tea can attenuate DN development by modulating gut microbiota and ferroptosis, which presents a novel scientific rationale for the clinical application of kidney tea.

SELECTION OF CITATIONS
SEARCH DETAIL