Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 641: 942-949, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36989820

ABSTRACT

Lithium-sulfur batteries (LSBs) have aroused great research interest due to their high theoretical capacity and high energy density. To further develop lithium-sulfur batteries, it has become more and more important to put more efforts in promoting the adsorption and rapid catalytic conversion of lithium polysulfides (LiPSs). Herein, Ni/Co bimetallic phosphides were encapsulated into nitrogen-doped dual carbon conductive network (NiCoP@NC) by annealing and phosphorizing Ni-ZIF-67 precursor at high temperature. Due to their numerous co-adsorption/catalytic sites and high conductivity of carbon skeleton, the encapsulated Ni/Co phosphides particles could significantly enhance the anchoring and catalytic conversion of LiPSs and provide ultrafast channels for Li+ transport. When used as a modified separator for LSBs, the cells displayed superior performance with an initial capacity of 1083.4 m Ah g-1 at 0.5 C and outstanding cycle stability with a capacity decay rate of only 0.09% per cycle for 300 cycles. Besides, even at high sulfur loading (3.2 mg cm-2), they still present satisfactory performance. Therefore, this study presents a novel strategy on how to use MOF derived bimetallic phosphides with chemical adsorption and catalytic conversion of polysulfides for high-power advanced lithium-sulfur batteries.

2.
J Colloid Interface Sci ; 611: 718-725, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34876265

ABSTRACT

Core-shell structured Ni-ZIF-67@ZIF-8 derived bimetal selenides encapsulating into a 3D interpenetrating dual-carbon framework (Ni3Se4@CoSe2@C/CNTs) have been designed and prepared via carbonization and subsequent selenization processes. In this hierarchical structure, Ni3Se4@CoSe2 nanocrystals were uniformly dispersed into the 3D carbon frameworkstructure/carbon nanotubes networks, which greatly enhanced the electronic conductivity and further enabled ultrafast Na-ion diffusion kinetics. When used as anode materials of sodium ion battery (SIB), The Ni3Se4@CoSe2@C/CNTs electrode delivered the excellent rate capability of 206 mA h g-1 at 3 A g-1 and marvelous cyclic stability with capacity retention of 243 mA h g-1 after 600 cycles at 1 A g-1. This research provides a new way to prepare bimetallic selenide derived from MOF precursor with amazing heterostructure as the advanced anode materials for SIBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...