Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters











Publication year range
1.
Environ Sci Ecotechnol ; 22: 100480, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39309319

ABSTRACT

Biofilm reactors, known for utilizing biofilm formation for cell immobilization, offer enhanced biomass concentration and operational stability over traditional planktonic systems. However, the dense nature of biofilms poses challenges for substrate accessibility to cells and the efficient release of products, making mass transfer efficiency a critical issue in these systems. Recent advancements have unveiled the intricate, heterogeneous architecture of biofilms, contradicting the earlier view of them as uniform, porous structures with consistent mass transfer properties. In this review, we explore six biofilm reactor configurations and their potential combinations, emphasizing how the spatial arrangement of biofilms within reactors influences mass transfer efficiency and overall reactor performance. Furthermore, we discuss how to apply artificial intelligence in processing biofilm measurement data and predicting reactor performance. This review highlights the role of biofilm reactors in environmental and energy sectors, paving the way for future innovations in biofilm-based technologies and their broader applications.

2.
J Cell Mol Med ; 28(18): e70092, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39289782

ABSTRACT

Primary ciliary dyskinesia (PCD) is an autosomal recessive genetic disorder characterized by ultrastructural defects in the cilia or flagella of cells, causing respiratory abnormalities, sinusitis, visceral transposition, and male infertility. DNAAF3 plays an important role in the assembly and transportation of axonemal dynein complexes in cilia or flagella and has been shown to be associated with PCD. To date, only two cases of PCD with infertility associated with DNAAF3 mutations have been reported, and no mouse models for this gene have been successfully constructed. This study was conducted on an infertile Chinese male patient with a history of bronchitis. Examination of the patient's semen revealed severe asthenozoospermia and teratospermia. Whole exome sequencing revealed a new homozygous loss-of-function DNAAF3 mutation. CRISPR-Cas9 gene-editing technology was used to construct the same mutation in C57/B6 mice, revealing that homozygous C57/B6 mice were characterized by severe hydrocephalus and early death. The results of this study expand the mutation spectrum of DNAAF3 and confirm its correlation with PCD pathogenesis. This study provides new insights on the mechanisms underlying male infertility related to DNAAF3 mutation and PCD.


Subject(s)
Asthenozoospermia , Homozygote , Mutation , Teratozoospermia , Male , Humans , Animals , Asthenozoospermia/genetics , Asthenozoospermia/pathology , Mice , Mutation/genetics , Teratozoospermia/genetics , Exome Sequencing , Infertility, Male/genetics , Mice, Inbred C57BL , Adult , Ciliary Motility Disorders/genetics
3.
Bioresour Technol ; 412: 131406, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39222863

ABSTRACT

Microalgae as a promising approach for wastewater treatment, has challenges in directly treating digested piggery wastewater (DPW) with high ammonia nitrogen (NH4+-N) concentration. To improve the performance of microalgae in DPW treatment, straw was employed as a substrate to form a straw-microalgae biofilm. The results demonstrated that the straw-microalgae biofilm achieved the highest NH4+-N removal rate of 193.2 mg L-1 d-1, which was 28.8 % higher than that of culture system without straw. The final NH4+-N concentration in the effluent met the discharge standard of 5 mg L-1. Furthermore, the total organic carbon (TOC) released from straw facilitated bacterial proliferation and the secretion of extracellular polymeric substances (EPS). The EPS and TOC increased the suspension viscosity and surface tension, thereby enhancing the residence time of CO2 in the liquid phase and promoting CO2 fixation. This study presented a novel method for the biological treatment of high-ammonia-nitrogen DPW.


Subject(s)
Ammonia , Microalgae , Nitrogen , Wastewater , Water Purification , Microalgae/metabolism , Wastewater/chemistry , Ammonia/metabolism , Water Purification/methods , Biofilms , Carbon Dioxide , Waste Disposal, Fluid/methods , Animals , Biodegradation, Environmental , Carbon/pharmacology , Swine
4.
Anal Chem ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39233361

ABSTRACT

The enzymatic depolymerization is a promising route to valorize the lignin polymers by turning the cross-linked polymers into monomers or oligomers. However, the lignin polymers cannot be effectively converted into small chemicals, as the oligomers are prone to polymerization, which is particularly challenging to monitor and thus regulate. Here, we develop a microstructured fiber Bragg grating (mFBG) sensor to probe the dynamic polymerization process of typical lignin oligomer surrogates─guaiacol (monomer) and guaiacylglycerol-ß-guaiacyl ether (GBG, dimer)─catalyzed by laccase in an operando way. The mFBG sensor was developed with its reliability well validated by control experiments at first. Further, operando monitoring of the polymerization reaction process of the typical lignin monomer (i.e., guaiacol) and dimer (guaiacylglycerol-ß-guaiacyl ether, GBG) was demonstrated under various conditions with the mFBG sensor. The GC-MS and UV-vis absorption measurements were carried out as a further check. Finally, the specific polymerization characteristics and reaction mechanism were studied. The mFBG sensor enables operando monitoring of the heterogeneous polymerization process of lignin monomers and oligomers and can potentially be tailored to probe more complex lignin depolymerization processes and unveil enzymatic synergistic mechanisms for the biological transition of biomass.

5.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39120445

ABSTRACT

State-of-the-art optical cavities are pivotal in pushing the envelope of laser frequency stability below 10-16. This is often achieved by extending the cavity length or cooling the system to cryogenic temperatures to reduce the thermal noise floor. In our study, we present a 30-cm-long cavity that operates at room temperature and is outfitted with crystalline coatings. The system has a predicted ultralow thermal noise floor of 4.4 × 10-17, comparable to what is observed in cryogenic silicon cavities. A 1397-nm laser is stabilized in this advanced cavity, and the stable frequency is then transferred to the clock transition in strontium optical lattice clocks via a frequency-doubling process. We have meticulously minimized and assessed the technical noise contributions through comparisons with an ultrastable reference laser that is locked to a commercially available 30-cm cavity. The frequency instability of the system is rigorously evaluated using a three-cornered-hat method. The results demonstrate that the laser frequency instability remains below 2 × 10-16 for averaging times ranging from 1 to 50 s. These findings underscore the significant potential of room-temperature cavities with crystalline coatings in high-precision metrology and pave the way for further improvements in optical lattice clocks.

6.
Environ Res ; 256: 119245, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38810821

ABSTRACT

Microalgae have been renowned as the most promising energy organism with significant potential in carbon fixation. In the large-scale cultivation of microalgae, the 3D porous substrate with higher specific surface area is favorable to microalgae adsorption and biofilm formation, whereas difficult for biofilm detachment and microalgae harvesting. To solve this contradiction, N-isopropylacrylamide, a temperature-responsive gels material, was grafted onto the inner surface of the 3D porous substrate to form temperature-controllable interface wettability. The interfacial free energy between microalgae biofilm and the substrates increased from -63.02 mJ/m2 to -31.89 mJ/m2 when temperature was lowered from 32 °C to 17 °C, weakening the adsorption capacity of cells to the surface, and making the biofilm detachment ratio increased to 50.8%. When further cooling the environmental temperature to 4 °C, the detachment capability of microalgae biofilm kept growing. 91.6% of the cells in the biofilm were harvesting from the 3D porous substrate. And the biofilm detached rate was up to 19.84 g/m2/h, realizing the temperature-controlled microalgae biofilm harvesting. But, microalgae growth results in the secretion of extracellular polymeric substances (EPS), which enhanced biofilm adhesion and made cell detachment more difficult. Thus, ultrasonic vibration was used to reinforce biofilm detachment. With the help of ultrasonic vibration, microalgae biofilm detached rate increased by 143.45% to 41.07 g/m2/h. These findings provide a solid foundation for further development of microalgae biofilm detachment and harvesting technology.


Subject(s)
Biofilms , Gels , Microalgae , Temperature , Biofilms/growth & development , Microalgae/growth & development , Porosity , Gels/chemistry , Acrylamides/chemistry
7.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38564326

ABSTRACT

Optical thin films with high-reflectivity (HR) are essential for applications in quantum precision measurements. In this work, we propose a coating technique based on reactive magnetron sputtering with RF-induced substrate bias to fabricate HR-optical thin films. First, atomically flat SiO2 and Ta2O5 layers have been demonstrated due to the assistance of radio-frequency plasma during the coating process. Second, a distributed Bragg reflector (DBR) mirror with an HR of ∼99.999 328% centered at 1397 nm has been realized. The DBR structure is air-H{LH}19-substrate, in which the L and H denote a single layer of SiO2 with a thickness of 237.8 nm and a single layer of Ta2O5 with a thickness of 171.6 nm, respectively. This novel coating method would facilitate the development of HR reflectors and promote their wide applications in precision measurements.

8.
Reprod Biol Endocrinol ; 21(1): 116, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38053137

ABSTRACT

BACKGROUND: The incidence of Y chromosome microdeletions varies among men with infertility across regions and ethnicities worldwide. However, comprehensive epidemiological studies on Y chromosome microdeletions in Chinese men with infertility are lacking. We aimed to investigate Y chromosome microdeletions prevalence among Chinese men with infertility and its correlation with intracytoplasmic sperm injection (ICSI) outcomes. METHODS: This single-center retrospective study included 4,714 men with infertility who were evaluated at the Reproductive Center of the First Affiliated Hospital of Sun Yat-sen University between May 2017 and January 2021. Semen analysis and Y-chromosome microdeletion via multiplex polymerase chain reaction were conducted on the men. The study compared outcomes of 36 ICSI cycles from couples with male azoospermia factor (AZF)cd deletions with those of a control group, which included 72 ICSI cycles from couples without male Y chromosome microdeletions, during the same period. Both groups underwent ICSI treatment using ejaculated sperm. RESULTS: Among 4,714 Chinese men with infertility, 3.31% had Y chromosome microdeletions. The combined deletion of sY254 and sY255 in the AZFc region and sY152 in the AZFd region was the prevalent pattern of Y chromosome microdeletion, with 3.05% detection rate. The detection rates of AZF deletions in patients with normal total sperm count, mild oligozoospermia, severe oligozoospermia, cryptozoospermia, and azoospermia were 0.17%, 1.13%, 5.53%, 71.43%, and 7.54%, respectively. Compared with the control group, the AZFcd deletion group exhibited no significant difference in the laboratory results or pregnancy outcomes of ICSI cycles using ejaculated sperm. CONCLUSIONS: This is the largest epidemiological study on Y chromosome microdeletions in Chinese men with infertility. The study results underline the necessity for detecting Y chromosome microdeletion in men with infertility and severe sperm count abnormalities, especially those with cryptozoospermia. The combined deletion of sY254 and sY255 in the AZFc region and sY152 in the AZFd region was the most prevalent Y chromosome microdeletion pattern. Among patients with AZFcd deletion and ejaculated sperm, ICSI treatment can result in pregnancy outcomes, similar to those without AZFcd deletion.


Subject(s)
Azoospermia , Infertility, Male , Oligospermia , Pregnancy , Female , Humans , Male , Oligospermia/epidemiology , Oligospermia/genetics , Sperm Injections, Intracytoplasmic/methods , Azoospermia/epidemiology , Azoospermia/genetics , Azoospermia/therapy , Retrospective Studies , East Asian People , Prevalence , Semen , Infertility, Male/epidemiology , Infertility, Male/genetics , Infertility, Male/therapy , Chromosomes, Human, Y/genetics , Pregnancy Outcome , Phenotype
9.
Water Res ; 244: 120499, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37634456

ABSTRACT

Biological treatment that utilizes microalgae technology has demonstrated outstanding efficacy in the wastewater purification and nutrients recovery. However, the high turbidity of the digested piggery wastewater (DPW) leads to serious light attenuation and the culture mode of suspended microalgae results in a huge landing area. Thus, to overcome light attenuation in DPW, a non-immersed titled zigzag microalgae biofilm was constructed by attaching it onto a porous cotton cloth. As a result, the light could directly irradiate microalgae biofilm that attached on both sides of the cotton cloth, and the microalgal biofilm area was up to 6 m2 per bioreactor landing area. When the non-immersed zigzag microalgae biofilm bioreactor (N-Z-MBP) was used to treat wastewater with an ammonia nitrogen (NH4+-N) concentration of 362 mg L-1, the NH4+-N was completely removed in just 5 days and the maximum growth rate of microalgae biofilm reached 7.02 g m-2 d-1. After 21 days of long-term sequencing batch operation for the N-Z-MBP, the biomass density of the biofilm reached 52 g m-2 and remained at this high value for the next 14 days. Most importantly, during the 35 days' running, the NH4+ -N maximum removal rate of single batch reached up to 65 mg L-1 d-1 and its concentration in the effluent was always below the discharge standard value (80 mg L-1 form GB18596-2001 of China) and total phosphorus was completely removed in each batch. Furthermore, the biomass concentration of microalgae cells in the effluent of the N-Z-MBP was almost zero, indicating that the non-submerged biofilm achieved in situ separation of microalgae from the wastewater. This work suggests that the N-Z-MBP can effectively purify DPW over a long period, providing a possible strategy to treat wastewater with high ammonia nitrogen and high turbidity.


Subject(s)
Environmental Pollutants , Microalgae , Wastewater , Ammonia , Biofilms , Nitrogen , Phosphorus , Biomass
10.
Bioresour Technol ; 385: 129374, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37352988

ABSTRACT

Fatty acid photodecarboxylase in Chlorella variabilis NC64A (CvFAP) performed excellent ability to exclusively decarboxylate renewable fatty acids for C1-shortened hydrocarbons fuel production under visible light. However, the large-scale application by such an approach is limited by the free state of CvFAP catalyst, which is unstable for efficient biofuel production. In this study, CvFAP was immobilized in magnetic nickel ferrite (NiFe2O4) nanoparticles for facile recovery by a simple procedure. The shift of Ni 2p in electron binding energy was detected to clarify the interaction between Ni2+ and histidine of CvFAP. The coordination of NiFe2O4 and CvFAP contributed to an efficient affinity binding with an immobilization capacity of 98 mg/g carrier. Hydrocarbon fuel concentration of 3.7 mM was obtained by NiFe2O4@CvFAP-induced photoenzymatic decarboxylation. The high stability of CvFAP in terms of residual enzyme activity of 79.7% at pH 9.0 and that of 68% at organic solvent ratio of 60%, respectively, were observed.


Subject(s)
Chlorella , Nanoparticles , Fatty Acids/metabolism , Chlorella/metabolism , Magnetic Phenomena
11.
Bioresour Technol ; 382: 129120, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37141996

ABSTRACT

The efficient cultivation of microalgae using CO2 from flue gas can be a win-win situation for both environmental protection and energy accessibility. In general, 10-20% of CO2 in flue gas would decrease pH and inhibit microalgae growth. However, Chlorella sorokiniana MB-1 under 15% CO2 showed a periodical auto-agglomeration, which promoted microalgae growth on the contrary in this study. The maximum biomass concentration of 3.27 g L-1 was higher than that cultivated with an optimal CO2 concentration. The pH decreased to 6.04 after the mixed gas with 15% CO2 (v/v) was bubbled into medium for 0.5 h, which resulted in auto-agglomeration to protect microalgae from acidification and keep a high specific growth rate of 0.03 h-1. Then the pH recovered to 7 during stabilization phase, auto-agglomeration ratio was up to 100% because of lamellar extracellular polymeric substances. Therefore, the interesting periodical agglomeration both enhanced growth and simplified harvesting.


Subject(s)
Chlorella , Microalgae , Carbon Dioxide/pharmacology , Biomass
12.
Chem Commun (Camb) ; 59(44): 6674-6677, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37096404

ABSTRACT

Green light was documented to improve the photostability of fatty acid photodecarboxylase from Chlorella variabilis (CvFAP). Compared to blue light, green light increased the pentadecane yield by 27.6% and improved the residual activity of CvFAP to 5.9-fold after the preillumination. Kinetics and thermodynamics indicated that blue light facilitated a high CvFAP activity.


Subject(s)
Chlorella , Fatty Acids , Light , Catalysis
13.
Bioresour Technol ; 374: 128775, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36828216

ABSTRACT

Gentle and effective pretreatment is necessary to produce clean lignocellulosic biomass-based fuels. Herein, inspired by the efficient lignin degradation in the foregut of termites, the microreactor system using immobilized laccase and recoverable vanillin was proposed. Firstly, the co-deposition coating of dopamine, hydrogen peroxide and copper sulfate was constructed for laccase immobilization and a high immobilization efficiency of 87.0% was obtained in 30 min. After storage for 10 days, 82.2% activity was maintained in the laccase-loaded microreactor, which is 210.0% higher than free laccase. In addition, 6% (w/w) vanillin can improve lignin degradation in the laccase-loaded microreactor without impairing laccase activity, leading to a 47.3% increment in cellulose accessibility. Finally, a high cellulose conversion rate of 88.1% can be achieved in 1 h with glucose productivity of 2.62 g L-1 h-1. These demonstrated that the appropriate addition of vanillin can synergize with immobilized laccase to enhance the conversion of lignocellulosic biomass.


Subject(s)
Laccase , Lignin , Lignin/metabolism , Laccase/metabolism , Biomass , Cellulose
14.
Bioresour Technol ; 372: 128660, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36693503

ABSTRACT

Aiming at optimizing the poor fluid mixing state in the traditional horizontal floating photobioreactors and reducing the high energy consumption and operational cost induced by electric-driven mixing, a novel floating photobioreactor with an embedded wind-driven agitating blade (WDAB-FPBR) was proposed in this study, which can effectively utilize both wind and wave energy for fluid mixing. The results show that the selected wind-driven agitating blade contributed to a decrement of 75.3% in mixing time and an increment of 87.5% in mass transfer coefficient, and meanwhile strengthened the fluid velocity along the light gradient. Owing to the enhanced fluid flow and mixing properties, an even distribution of algae cells was achieved in the WDAB floating photobioreactor, which resulted in an improvement of 140% in the photosynthesis efficiency of microalgae. From this, the biomass yield and carbon removal ratio showed an increment of 88.9% and 73.9%, respectively.


Subject(s)
Microalgae , Photobioreactors , Wind , Light , Photosynthesis , Biomass
15.
J Environ Manage ; 326(Pt A): 116757, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36395642

ABSTRACT

Biofilm-based microalgae culture combined with wastewater treatment is a promising biotechnology for environmental management. Light availability influences the accumulation of microalgal biomass and nutrient removal. A light attenuation model which comprehensively considered microalgal biofilm structure (density and biofilm thickness), pigments content, and extracellular polymeric substances content was developed to predict the light attenuation in biofilm according to the simplification of the radiative transfer equation. The predicted results were in good overall agreement with the experiment, with an average error of less than 9.02%. These factors (biofilm density, thickness, pigments content, and extracellular polymeric substances content) all contributed to the light intensity attenuation, but biofilm thickness caused the most dramatic attenuation under the same increment of relative change in actual culture. The scattering coefficient of the biofilm (0.433 m2/g) was less than that of the suspension (1.489 m2/g) under white incident light. It suggests that the dense structure of cells allows much light to be concentrated in the forward direction when transmitting. This model could be adopted to predict the light distribution in microalgal biofilm for the further design of efficient photobioreactors and the development of light optimization strategies.


Subject(s)
Microalgae , Biofilms , Photobioreactors , Biomass , Biotechnology
16.
Environ Res ; 216(Pt 3): 114645, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36323351

ABSTRACT

Microalgae biofilm-based culture provides an efficient CO2 reduction and wastewater treatment method for its high photosynthetic efficiency and density. As supporting substrates for microalgae biofilm, porous materials have a big available adsorption area, but mutual shading makes it difficult to transmit external light to the internal surface for attached cells' photosynthesis. Thus, light-guided particles (SiO2) were introduced into photosensitive resin to fabricate a light-guided ordered porous photobioreactor (PBR) by 3D printing technology in this study. The space utilization of the PBR was significantly enhanced and the effective microalgae adsorption area was increased by 13.6 times. Further, a thermo-responsive hydrogel was grafted onto the surface of the substrate to form a smart temperature-controllable interface that could enhance microalgae adsorption and desorption in both directions. When the thermo-responsive layer received light, it would generate heat due to the hydrogel's photo-thermal effect. And the surface temperature would then raise to 33 °C, higher than the hydrogel phase transition point of 32 °C, making the surface shrinking and more hydrophobicity for microalgae cells attachment. The microalgae cells' adsorption capacity increased by 103%, resulting in a high microalgae growth rate of 3.572 g m-2 d-1. When turning off the light, the surface temperature would cool down to below 20 °C, the surface would shrink. And the biofilm shows a 564.7% increase in desorption ability, realizing temperature-controlled microalgae harvesting.


Subject(s)
Microalgae , Carbon Dioxide , Adsorption , Temperature , Porosity , Silicon Dioxide , Photobioreactors , Biofilms , Hydrogels , Biomass
17.
Bioresour Technol ; 367: 128232, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36332862

ABSTRACT

As one of the fastest-growing carbon emission sources, the aviation sector is severely restricted by carbon emission reduction targets. Sustainable aviation fuel (SAF) has emerged as the most potential alternative to traditional aviation fuel, but harsh production technologies limit its commercialization. Fatty acids photodecarboxylase from Chlorella variabilis NC64A (CvFAP), the latest discovered photoenzyme, provides promising approaches to produce various carbon-neutral biofuels and fine chemicals. This review highlights the state-of-the-art strategies to enhance the application of CvFAP in carbon-neutral biofuel and fine chemicals production, including supplementing alkane as decoy molecular, screening efficient CvFAP variants with directed evolution, constructing genetic strains, employing biphasic catalytic system, and immobilizing CvFAP in an efficient photobioreactor. Furthermore, future opportunities are suggested to enhance photoenzymatic decarboxylation and explore the catalytic mechanism of CvFAP. This review provides a broad context to improve CvFAP catalysis and advance its potential applications.


Subject(s)
Aviation , Chlorella , Decarboxylation , Biofuels , Carbon
18.
Bioresour Technol ; 363: 127891, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36089133

ABSTRACT

The development of microalgae-bacteria symbiosis for treating wastewater is flourishing owing to its high biomass productivity and exceptional ability to purify contaminants. A nature-selected microalgae-bacteria symbiosis, mainly consisting of Dictyosphaerium and Pseudomonas, was used to treat oxytetracycline (OTC), ofloxacin (OFLX), and antibiotic-containing swine wastewater. Increased antibiotic concentration gradually reduced biomass productivity and intricately changed symbiosis composition, while 1 mg/L OTC accelerated the growth of symbiosis. The symbiosis biomass productivity reached 3.4-3.5 g/L (5.7-15.3 % protein, 18.4-39.3 % carbohydrate, and 2.1-3.9 % chlorophyll) when cultured in antibiotic-containing swine wastewater. The symbiosis displayed an excellent capacity to remove 76.3-83.4 % chemical oxygen demand, 53.5-62.4 % total ammonia nitrogen, 97.5-100.0 % total phosphorus, 96.3-100.0 % OTC, and 32.8-60.1 % OFLX in swine wastewater. The microbial community analysis revealed that the existence of OTC/OFLX increased the richness and evenness of microalgae but reduced bacteria species in microalgae-bacteria, and the toxicity of OFLX to bacteria was stronger than that of OTC.


Subject(s)
Microalgae , Oxytetracycline , Ammonia/metabolism , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria , Biomass , Carbohydrates , Chlorophyll/metabolism , Microalgae/metabolism , Nitrogen/metabolism , Ofloxacin/metabolism , Ofloxacin/pharmacology , Oxytetracycline/metabolism , Oxytetracycline/pharmacology , Phosphorus/metabolism , Swine , Symbiosis , Wastewater/chemistry
19.
Water Res ; 223: 119041, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36081254

ABSTRACT

Treatment technologies based on microalgal biofilms have an enormous potential for dealing with water pollution because they can efficiently redirect nutrients from wastewater to renewable biomass feedstock. However, poor light transmittance is caused by the high turbidity of wastewater, which hinders the commercial application of microalgal biofilm-based wastewater treatment. Here, a bifunctional substrate with lighting and biofilm support functions was constructed using a light guide plate. In a biofilm photobioreactor (bPBR) with a bifunctional lighting/supporting substrate (BL/S substrate), light can directly irradiate the biofilm to avoid attenuation by the turbid wastewater. Direct irradiation of light onto the biofilm led to a 93.0% enhancement of microalgal photoconversion efficiency when compared to that of a supporting substrate without lighting (SO substrate). Meanwhile, the maximum growth rate of the microalgal biofilm on the BL/S substrate was 8.7 g m-2 d-1, which was increased by 60.3%. The removal rate of ammonia nitrogen (NH4+-N) from the digested wastewater contributed by the microalgal biofilm reached 22.6 mg L-1 d-1, which was higher than the previously reported that of NH4+-N from turbid digested wastewater by the biofilms. Furthermore, the BL/S substrate can facilitate the secretion of abundant extracellular polymeric substrates, which results in the stable adhesion of the biofilm onto the BL/S substrate. The optical density of the microalgae cells at the outlet of the bPBR with BL/S substrate was below 0.1, which was 94% lower than that of the bPBR with the SO substrate. The results indicated the BL/S substrate may avoid the loss of microalgal biomass, and almost all biomass could be easily harvested from the biofilm for algae-based biomass resources. Consequently, this study can offer a promising alternative with efficient treatment technologies for wastewater with high turbidity.


Subject(s)
Microalgae , Ammonia , Biofilms , Biomass , Lighting , Nitrogen , Wastewater
20.
Environ Res ; 214(Pt 1): 113850, 2022 11.
Article in English | MEDLINE | ID: mdl-35817165

ABSTRACT

Microalgae-based technology provides a potential approach to biologically treating oxytetracycline (OTC) wastewater due to its environmental friendliness, low cost, and high efficiency. However, the OTC degradation and transformation characteristics by microalgae are still unclear and need further exploration. This study used microalgae Chlorella sorokiniana MB-1 for OTC wastewater treatment. The OTC with an initial concentration less than 50 mg L-1 promoted microalgae growth, while OTC with a concentration higher than 100 mg L-1 inhibited microalgae growth significantly. More than 99% OTC was removed with the biomass productivity up to 1.8 g L-1 when treated OTC with 10 mg L-1 initial concentration for 7 days. Chlorophyll and total sugar contents decreased, while protein and lipid contents increased compared to the control without OTC. The malondialdehyde content firstly reduced but subsequently enhanced when increased OTC concentration, while superoxide dismutase content gradually enhanced, manifesting that traces of OTC stimulate microalgae antioxidant capacity, while the increasing OTC caused further oxidative damage to microalgae cells. The removal pathways of OTC mainly include photolysis (75.8%), biodegradation (17.8%), biosorption (3.6%), and hydrolysis (2.7%). Overall, removing OTC by microalgae was confirmed to be an excellent technology for treating antibiotics wastewater whilst accumulating microalgae biomass.


Subject(s)
Chlorella , Microalgae , Oxytetracycline , Water Purification , Anti-Bacterial Agents , Biomass , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL