Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 8(8): 1295-313, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23794260

ABSTRACT

Polo-like kinase-2 (Plk-2) has been implicated as the dominant kinase involved in the phosphorylation of α-synuclein in Lewy bodies, which are one of the hallmarks of Parkinson's disease neuropathology. Potent, selective, brain-penetrant inhibitors of Plk-2 were obtained from a structure-guided drug discovery approach driven by the first reported Plk-2-inhibitor complexes. The best of these compounds showed excellent isoform and kinome-wide selectivity, with physicochemical properties sufficient to interrogate the role of Plk-2 inhibition in vivo. One such compound significantly decreased phosphorylation of α-synuclein in rat brain upon oral administration and represents a useful probe for future studies of this therapeutic avenue toward the potential treatment of Parkinson's disease.


Subject(s)
Brain/metabolism , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , alpha-Synuclein/metabolism , Animals , Binding Sites , Blood-Brain Barrier/metabolism , Female , HEK293 Cells , Half-Life , Humans , Male , Mice , Molecular Dynamics Simulation , Phosphorylation/drug effects , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Rats , Rats, Sprague-Dawley
3.
Bioorg Med Chem Lett ; 23(9): 2743-9, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23522834

ABSTRACT

Polo-like kinase-2 (Plk-2) is a potential therapeutic target for Parkinson's disease and this Letter describes the SAR of a series of dihydropteridinone based Plk-2 inhibitors. By optimizing both the N-8 substituent and the biaryl region of the inhibitors we obtained single digit nanomolar compounds such as 37 with excellent selectivity for Plk-2 over Plk-1. When dosed orally in rats, compound 37 demonstrated a 41-45% reduction of pS129-α-synuclein levels in the cerebral cortex.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Administration, Oral , Animals , Brain/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , HEK293 Cells , Half-Life , Humans , Mice , Microsomes, Liver/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Pteridines/chemical synthesis , Pteridines/chemistry , Pteridines/pharmacokinetics , Rats , Structure-Activity Relationship , Polo-Like Kinase 1
4.
Bioorg Med Chem Lett ; 23(7): 2181-6, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23465612

ABSTRACT

The structure-activity relationship of a series of dihydroisoquinoline BACE-1 inhibitors is described. Application of structure-based design to screening hit 1 yielded sub-micromolar inhibitors. Replacement of the carboxylic acid of 1 was guided by X-ray crystallography, which allowed the replacement of a key water-mediated hydrogen bond. This work culminated in compounds such as 31, which possess good BACE-1 potency, excellent permeability and a low P-gp efflux ratio.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid/chemistry , Drug Design , Isoquinolines/pharmacology , Protease Inhibitors/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Catalysis , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Models, Molecular , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Structure-Activity Relationship
5.
Biochem Pharmacol ; 79(11): 1553-61, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20005211

ABSTRACT

1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS119) is a prodrug of the 1,2-bis(sulfonyl)hydrazine class of antineoplastic agents designed to exploit the oxygen-deficient regions of cancerous tissue. Thus, under reductive conditions in hypoxic cells this agent decomposes to produce the reactive intermediate 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE), which in turn generates products that alkylate the O(6)-position of guanine in DNA. Comparison of the cytotoxicity of KS119 in cultured cells lacking O(6)-alkylguanine-DNA alkyltransferase (AGT) to an agent such as Onrigin, which through base catalyzed activation produces the same critical DNA G-C cross-link lesions by the generation of 90CE, indicates that KS119 is substantially more potent than Onrigin under conditions of oxygen deficiency, despite being incompletely activated. In cell lines expressing relatively large amounts of AGT, the design of the prodrug KS119, which requires intracellular activation by reductase enzymes to produce a cytotoxic effect, results in an ability to overcome resistance derived from the expression of AGT. This appears to derive from the ability of a small portion of the chloroethylating species produced by the activation of KS119 to slip through the cellular protection afforded by AGT to generate the few DNA G-C cross-links that are required for tumor cell lethality. The findings also demonstrate that activation of KS119 under oxygen-deficient conditions is ubiquitous, occurring in all of the cell lines tested thus far, suggesting that the enzymes required for reductive activation of this agent are widely distributed in many different tumor types.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Hydrazines/pharmacology , Hypoxia , O(6)-Methylguanine-DNA Methyltransferase/physiology , Prodrugs/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Humans , Hydrazines/pharmacokinetics , O(6)-Methylguanine-DNA Methyltransferase/deficiency , Oxidation-Reduction , Oxidoreductases/metabolism , Prodrugs/metabolism , Prodrugs/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL