Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Med Infect Dis ; 7(10)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36288025

ABSTRACT

Leptospirosis is an important worldwide tropical disease caused by pathogenic Leptospira spp. The determination of virulence genes is important, as it influences patients' clinical manifestations and clinical outcomes. This case report focused on detecting the pathogenic genes of Leptospira in association with the clinical manifestations of patients at the Hospital Universiti Sains Malaysia, Malaysia, who presented with acute febrile illness. Two cases were found and, to the best of our knowledge, these were the first two cases in Malaysia in which patients presented with febrile illness were associated with successful Leptospira isolation from clinical samples. Both clinical isolates were identified by 16S rRNA sequencing as Leptospira weilii and Leptospira interrogans, respectively, and they were classified as pathogenic Leptospira by the presence of different pathogenic genes, based on a polymerase chain reaction (PCR) amplification of targeted genes. This report emphasizes that different infecting Leptospira species and the presence of different virulence factors cause a slight difference in clinical manifestations and laboratory findings of leptospirosis. Genomic sequencing and annotation revealed the detection of classical leptospiral virulence factor genes that were otherwise missed using PCR for detection of Leptospira weilii genome B208.

2.
Sci Rep ; 12(1): 1824, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35115615

ABSTRACT

The human gut contains a complex microbiota dominated by bacteriophages but also containing other viruses and bacteria and fungi. There are a growing number of techniques for the extraction, sequencing, and analysis of the virome but currently no standardized protocols. This study established an effective workflow for virome analysis to investigate the virome of stool samples from two understudied ethnic groups from Malaysia: the Jakun and Jehai Orang Asli. By using the virome extraction and analysis workflow with the Oxford Nanopore Technology, long-read sequencing successfully captured close to full-length viral genomes. The virome composition of the two indigenous Malaysian communities were remarkably different from those found in other parts of the world. Additionally, plant viruses found in the viromes of these individuals were attributed to traditional food-seeking methods. This study establishes a human gut virome workflow and extends insights into the healthy human gut virome, laying the groundwork for comparative studies.


Subject(s)
Gastrointestinal Microbiome/genetics , Genome, Viral , Indigenous Peoples , Viruses/genetics , Feces/virology , Female , High-Throughput Nucleotide Sequencing , Humans , Malaysia , Metagenomics/methods , Phylogeny , Virome/genetics , Viruses/classification
3.
BMC Microbiol ; 21(1): 51, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33596837

ABSTRACT

BACKGROUNDS: Escherichia coli K1 causes neonatal meningitis. Transcriptome studies are indispensable to comprehend the pathology and biology of these bacteria. Recently, we showed that nanoparticles loaded with Hesperidin are potential novel antibacterial agents against E. coli K1. Here, bacteria were treated with and without Hesperidin conjugated with silver nanoparticles, and silver alone, and 50% minimum inhibitory concentration was determined. Differential gene expression analysis using RNA-seq, was performed using Degust software and a set of genes involved in cell stress response and metabolism were selected for the study. RESULTS: 50% minimum inhibitory concentration with silver-conjugated Hesperidin was achieved with 0.5 µg/ml of Hesperidin conjugated with silver nanoparticles at 1 h. Differential genetic analysis revealed the expression of 122 genes (≥ 2-log FC, P< 0.01) in both E. coli K1 treated with Hesperidin conjugated silver nanoparticles and E. coli K1 treated with silver alone, compared to untreated E. coli K1. Of note, the expression levels of cation efflux genes (cusA and copA) and translocation of ions, across the membrane genes (rsxB) were found to increase 2.6, 3.1, and 3.3- log FC, respectively. Significant regulation was observed for metabolic genes and several genes involved in the coordination of flagella. CONCLUSIONS: The antibacterial mechanism of nanoparticles maybe due to disruption of the cell membrane, oxidative stress, and metabolism in E. coli K1. Further studies will lead to a better understanding of the genetic mechanisms underlying treatment with nanoparticles and identification of much needed novel antimicrobial drug candidates.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Gene Expression Profiling , Hesperidin/pharmacology , Metal Nanoparticles/chemistry , Silver/pharmacology , Hesperidin/chemistry , Microbial Sensitivity Tests , Oxidative Stress/drug effects , Transcriptome
4.
3 Biotech ; 11(2): 40, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33479595

ABSTRACT

Microbial communities from a lake and river flowing through a highly dense urbanized township in Malaysia were profiled by sequencing amplicons of the 16S V3-V4 and 18S V9 hypervariable rRNA gene regions via Illumina MiSeq. Results revealed that Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the dominant prokaryotic phyla; whereas, eukaryotic communities were predominantly of the SAR clade and Opisthokonta. The abundance of Pseudomonas and Flavobacterium in all sites suggested the possible presence of pathogens in the urban water systems, supported by the most probable number (MPN) values of more than 1600 per 100 mL. Urbanization could have impacted the microbial communities as transient communities (clinical, water-borne and opportunistic pathogens) coexisted with common indigenous aquatic communities (Cyanobacteria). It was concluded that in urban water systems, microbial communities vary in their abundance of microbial phyla detected along the water systems. The influences of urban land use and anthropogenic activities influenced the physicochemical properties and the microbial dynamics in the water systems. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-020-02617-3.

5.
Biology (Basel) ; 9(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260913

ABSTRACT

Basal stem rot (BSR), caused by Ganoderma boninense, is the most devastating oil palm disease in South East Asia, costing US$500 million annually. Various soil physicochemical parameters have been associated with an increase in BSR incidences. However, very little attention has been directed to understanding the relationship between soil microbiome and BSR incidence in oil palm fields. The prokaryotic and eukaryotic microbial diversities of two coastal soils, Blenheim soil (Typic Quartzipsamment-calcareous shell deposits, light texture) with low disease incidence (1.9%) and Bernam soil (Typic Endoaquept-non-acid sulfate) with high disease incidence (33.1%), were determined using the 16S (V3-V4 region) and 18S (V9 region) rRNA amplicon sequencing. Soil physicochemical properties (pH, electrical conductivity, soil organic matter, nitrogen, phosphorus, cation exchange capacity, exchangeable cations, micronutrients, and soil physical parameters) were also analyzed for the two coastal soils. Results revealed that Blenheim soil comprises higher prokaryotic and eukaryotic diversities, accompanied by higher pH and calcium content. Blenheim soil was observed to have a higher relative abundance of bacterial taxa associated with disease suppression such as Calditrichaeota, Zixibacteria, GAL15, Omnitrophicaeota, Rokubacteria, AKYG587 (Planctomycetes), JdFR-76 (Calditrichaeota), and Rubrobacter (Actinobacteria). In contrast, Bernam soil had a higher proportion of other bacterial taxa, Chloroflexi and Acidothermus (Actinobacteria). Cercomonas (Cercozoa) and Calcarisporiella (Ascomycota) were eukaryotes that are abundant in Blenheim soil, while Uronema (Ciliophora) and mammals were present in higher abundance in Bernam soil. Some of the bacterial taxa have been reported previously in disease-suppressive and -conducive soils as potential disease-suppressive or disease-inducible bacteria. Furthermore, Cercomonas was reported previously as potential bacterivorous flagellates involved in the selection of highly toxic biocontrol bacteria, which might contribute to disease suppression indirectly. The results from this study may provide valuable information related to soil microbial community structures and their association with soil characteristics and soil susceptibility to Ganoderma.

SELECTION OF CITATIONS
SEARCH DETAIL
...