Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202401591, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844428

ABSTRACT

The Ni-catalyzed enantioselective addition reaction of aryl halides to aldehydes was studied with cyanobis(oxazoline) as chiral ligands and Mn as reductant. Aryl and heteroaryl bromides reacted with phenyl aldehyde at room temperature to produce dibenzyl alcohols in 16-99% yields with 53-92% ees. Moreover, the coupling of phenyl chloride with a variety of aryl, heteroaryl and alkyl aldehydes was demonstrated in the presence of cyanobis(oxazoline)/Ni(II) at 60 oC in generally high yields with moderate enantioselectivities.

2.
J Antimicrob Chemother ; 79(6): 1294-1302, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38574003

ABSTRACT

OBJECTIVES: To elucidate the mechanism of tigecycline resistance in Escherichia coli that is mediated by the tet(A) variant gene. METHODS: E. coli strain 573 carried a plasmid-borne tet(A) variant gene, tentatively designated tet(A)TIG, that conferred decreased tigecycline susceptibility (MIC 0.5 mg/L). When exposed to increasing concentrations of tigecycline (0.25-8 mg/L), mutants growing at 2, 4 and 8 mg/L were obtained and sequenced. Copies of plasmid and tet(A)TIG relative to the chromosomal DNA in the mutants were determined by WGS and quantitative PCR (qPCR). Expression of tet(A)TIG in the mutants was evaluated by RT-qPCR. The tet(A)TIG-carrying plasmids were visualized by S1-PFGE and Southern blot hybridization. PCR served for the detection of a tet(A)TIG-carrying unconventional circularizable structure (UCS). RESULTS: Tigecycline resistance with maximum MICs of 16 mg/L was seen in E. coli mutants selected in the presence of tigecycline. Compared with the parental strain, the relative copy number and transcription level of tet(A)TIG in the mutants increased significantly in the presence of 2, 4 and 8 mg/L tigecycline, respectively. With increasing tigecycline selection pressure, the tet(A)TIG-carrying plasmids in the mutants increased in size, correlating with the number of tandem amplificates of a ΔTnAs1-flanked UCS harbouring tet(A)TIG. These tandem amplificates were not stable in the absence of tigecycline. CONCLUSIONS: Tigecycline resistance is due to the tandem amplification of a ΔTnAs1-flanked tet(A)TIG-carrying plasmid-borne segment in E. coli. The gain/loss of the tandem amplificates in the presence/absence of tigecycline represents an economic way for the bacteria to survive in the presence of tigecycline.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Microbial Sensitivity Tests , Plasmids , Tigecycline , Tigecycline/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Minocycline/pharmacology , Minocycline/analogs & derivatives , Gene Amplification , Drug Resistance, Bacterial/genetics , Whole Genome Sequencing , Antiporters
3.
Article in English | MEDLINE | ID: mdl-37549732

ABSTRACT

OBJECTIVE: To investigate the prevalence of a tet(A) gene variant and its role in developing high-level tigecycline resistance among carbapenem-resistant Klebsiella pneumoniae (CRKP) clinical isolates. METHODS: The mechanism of high-level tigecycline resistance in CRKP mediated by a tet(A) variant was explored by induction experiments, antimicrobial susceptibility testing, whole-genome sequencing and bioinformatics analysis. The amplification and overexpression of the tet(A) variant were measured by the determination of sequencing depth, gene copy numbers, and qRT-PCR. RESULTS: A high rate (62.1%, 998/1607) of tet(A) variant carriage was observed among 1607 CRKP clinical isolates from Henan Province, China. High-level tigecycline resistance could rapidly develop by the amplification of the tet(A) variant in these isolates. The analysis of the raw sequencing data and the plasmid mapping depth revealed that the ΔtnpA homologous sequence of Tn1721 supports the amplification of the region that harbours the tet(A) variant by forming a large number of repeat arrays through translocatable units (TUs). Moreover, the epidemiological analysis of tet(A) variant-carrying structures among 1607 clinical CRKPs showed that the TU structure is widely present. CONCLUSION: The presence of a tigecycline resistance-mediating tet(A) variant in CRKP clinical isolates represents a greater health concern than initially thought and should be monitored consistently.

4.
Sci Adv ; 9(15): eadg6265, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37043562

ABSTRACT

Hepatitis B virus (HBV) chronically infects an estimated 300 million people, and standard treatments are rarely curative. Infection increases the risk of liver cirrhosis and hepatocellular carcinoma, and consequently, nearly 1 million people die each year from chronic hepatitis B. Tools and approaches that bring insights into HBV biology and facilitate the discovery and evaluation of antiviral drugs are in demand. Here, we describe a method to initiate the replication of HBV, a DNA virus, using synthetic RNA. This approach eliminates contaminating background signals from input virus or plasmid DNA that plagues existing systems and can be used to study multiple stages of HBV replication. We further demonstrate that this method can be uniquely applied to identify sequence variants that confer resistance to antiviral drugs.


Subject(s)
Hepatitis B, Chronic , Liver Neoplasms , Humans , Hepatitis B virus/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , RNA , Hepatitis B, Chronic/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Virus Replication
5.
Microbiol Spectr ; 11(3): e0274122, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36995237

ABSTRACT

The aim of this study was to investigate the transferability of acquired linezolid resistance genes and associated mobile genetic elements in an Enterococcus faecalis isolate QZ076, cocarrying optrA, cfr, cfr(D), and poxtA2 genes. MICs were determined by broth microdilution. Whole-genome sequencing (WGS) was performed using the Illumina and Nanopore platforms. The transfer of linezolid resistance genes was investigated by conjugation, using E. faecalis JH2-2 and clinical methicillin-resistant Staphylococcus aureus (MRSA) 109 as recipients. E. faecalis QZ076 harbors four plasmids, designated pQZ076-1 to pQZ076-4, with optrA located in the chromosomal DNA. The gene cfr was located on a novel pseudocompound transposon, designated Tn7515, integrated into the 65,961-bp pCF10-like pheromone-responsive conjugative plasmid pQZ076-1. Tn7515 generated 8-bp direct target duplications (5'-GATACGTA-3'). The genes cfr(D) and poxtA2 were colocated on the 16,397-bp mobilizable broad-host-range Inc18 plasmid pQZ076-4. The cfr-carrying plasmid pQZ076-1 could transfer from E. faecalis QZ076 to E. faecalis JH2-2, along with the cfr(D)- and poxtA2-cocarrying plasmid pQZ076-4, conferring the corresponding resistant phenotype to the recipient. Moreover, pQZ076-4 could also transfer to MRSA 109. To the best of our knowledge, this study presented the first report of four acquired linezolid resistance genes [optrA, cfr, cfr(D), and poxtA2] being simultaneously present in the same E. faecalis isolate. The location of the cfr gene on a pseudocompound transposon in a pheromone-responsive conjugative plasmid will accelerate its rapid dissemination. In addition, the cfr-carrying pheromone-responsive conjugative plasmid in E. faecalis was also able to mobilize the interspecies transfer of the cfr(D)- and poxtA2-cocarrying plasmid between enterococci and staphylococci. IMPORTANCE In this study, the simultaneous occurrence of four acquired oxazolidinone resistance genes [optrA, cfr, cfr(D), and poxtA2] was identified in an E. faecalis isolate of chicken origin. The association of the cfr gene with a novel pseudocompound transposon Tn7515 integrated into a pCF10-like pheromone-responsive conjugative plasmid will accelerate its dissemination. Moreover, the location of the resistance genes cfr(D) and poxtA2 on a mobilizable broad-host-range Inc18 family plasmid represents the basis for their intra- and interspecies dissemination with the aid of a conjugative plasmid and further accelerates the spreading of acquired oxazolidinone resistance genes, such as cfr, cfr(D), and poxtA2, among Gram-positive pathogens.


Subject(s)
Gram-Positive Bacterial Infections , Methicillin-Resistant Staphylococcus aureus , Oxazolidinones , Animals , Linezolid/pharmacology , Anti-Bacterial Agents/pharmacology , Enterococcus faecalis/genetics , Chickens , Drug Resistance, Bacterial/genetics , Genes, Bacterial/genetics , Plasmids/genetics , Microbial Sensitivity Tests , Chromosomes , Gram-Positive Bacterial Infections/epidemiology
6.
Hum Gene Ther ; 34(7-8): 289-302, 2023 04.
Article in English | MEDLINE | ID: mdl-36950804

ABSTRACT

Capsid engineering of adeno-associated virus (AAV) can surmount current limitations to gene therapy such as broad tissue tropism, low transduction efficiency, or pre-existing neutralizing antibodies (NAb) that restrict patient eligibility. We previously generated an AAV3B combinatorial capsid library by integrating rational design and directed evolution with the aim of improving hepatotropism. A potential isolate, AAV3B-DE5, gained a selective proliferative advantage over five rounds of iterative selection in hepatocyte spheroid cultures. In this study, we reanalyzed our original dataset derived from the AAV3B combinatorial library and isolated variants from earlier (one to three) rounds of selection, with the assumption that variants with faster replication kinetics are not necessarily the most efficient transducers. We identified a potential candidate, AAV3B-V04, which demonstrated significantly enhanced transduction in mouse-passaged primary human hepatocytes as well as in humanized liver chimeric mice, compared to the parental AAV3B or the previously described isolate, AAV3B-DE5. Interestingly, the AAV3B-V04 capsid variant exhibited significantly reduced seroreactivity to pooled or individual human serum samples. Forty-four percent of serum samples with pre-existing NAbs to AAV3B had 5- to 20-fold lower reciprocal NAb titers to AAV3B-V04. AAV3B-V04 has only nine amino acid substitutions, clustered in variable region IV compared to AAV3B, indicating the importance of the loops at the top of the three-fold protrusions in determining both transduction efficiency and immunogenicity. This study highlights the effectiveness of rational design combined with targeted selection for enhanced AAV transduction via molecular evolution approaches. Our findings support the concept of limiting selection rounds to isolate the best transducing AAV3B variant without outgrowth of faster replicating candidates. We conclude that AAV3B-V04 provides advantages such as improved human hepatocyte tropism and immune evasion and propose its utility as a superior candidate for liver gene therapy.


Subject(s)
Capsid , Immune Evasion , Humans , Animals , Mice , Capsid/metabolism , Immune Evasion/genetics , Transduction, Genetic , Hepatocytes/metabolism , Capsid Proteins/genetics , Antibodies, Neutralizing , Tropism/genetics , Dependovirus , Genetic Vectors/genetics
7.
Mol Ther ; 30(12): 3542-3551, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36242517

ABSTRACT

Hemophilia A gene therapy targets hepatocytes to express B domain deleted (BDD) clotting factor VIII (FVIII) to permit viral encapsidation. Since BDD is prone to misfolding in the endoplasmic reticulum (ER) and ER protein misfolding in hepatocytes followed by high-fat diet (HFD) can cause hepatocellular carcinoma (HCC), we studied how FVIII misfolding impacts HCC development using hepatocyte DNA delivery to express three proteins from the same parental vector: (1) well-folded cytosolic dihydrofolate reductase (DHFR); (2) BDD-FVIII, which is prone to misfolding in the ER; and (3) N6-FVIII, which folds more efficiently than BDD-FVIII. One week after DNA delivery, when FVIII expression was undetectable, mice were fed HFD for 65 weeks. Remarkably, all mice that received BDD-FVIII vector developed liver tumors, whereas only 58% of mice that received N6 and no mice that received DHFR vector developed liver tumors, suggesting that the degree of protein misfolding in the ER increases predisposition to HCC in the context of an HFD and in the absence of viral transduction. Our findings raise concerns of ectopic BDD-FVIII expression in hepatocytes in the clinic, which poses risks independent of viral vector integration. Limited expression per hepatocyte and/or use of proteins that avoid misfolding may enhance safety.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Hepatocytes , DNA , Blood Coagulation Factors
8.
Cell Rep ; 40(11): 111321, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36103835

ABSTRACT

Advanced non-alcoholic fatty liver disease (NAFLD) is a rapidly emerging global health problem associated with pre-disposing genetic polymorphisms, most strikingly an isoleucine to methionine substitution in patatin-like phospholipase domain-containing protein 3 (PNPLA3-I148M). Here, we study how human hepatocytes with PNPLA3 148I and 148M variants engrafted in the livers of broadly immunodeficient chimeric mice respond to hypercaloric diets. As early as four weeks, mice developed dyslipidemia, impaired glucose tolerance, and steatosis with ballooning degeneration selectively in the human graft, followed by pericellular fibrosis after eight weeks of hypercaloric feeding. Hepatocytes with the PNPLA3-148M variant, either from a homozygous 148M donor or overexpressed in a 148I donor background, developed microvesicular and severe steatosis with frequent ballooning degeneration, resulting in more active steatohepatitis than 148I hepatocytes. We conclude that PNPLA3-148M in human hepatocytes exacerbates NAFLD. These models will facilitate mechanistic studies into human genetic variant contributions to advanced fatty liver diseases.


Subject(s)
Non-alcoholic Fatty Liver Disease , Acyltransferases , Animals , Hepatocytes/metabolism , Humans , Lipase/genetics , Lipase/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Non-alcoholic Fatty Liver Disease/genetics , Phospholipases A2, Calcium-Independent
9.
Cancer Med ; 11(3): 602-617, 2022 02.
Article in English | MEDLINE | ID: mdl-34951132

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) patient-derived xenograft (PDX) models hold potential to advance knowledge in HCC biology to help improve systemic therapies. Beside hepatitis B virus-associated tumors, HCC is poorly established in PDX. METHODS: PDX formation from fresh HCC biopsies were obtained and implanted intrahepatically or in subrenal capsule (SRC). Mouse liver injury was induced in immunodeficient Fah-/-  mice through cycling off nitisinone after HCC biopsy implantation, versus continuous nitisinone as non-liver injury controls. Mice with macroscopically detectable PDX showed rising human alpha1-antitrypsin (hAAT) serum levels, and conversely, no PDX was observed in mice with undetectable hAAT. RESULTS: Using rising hAAT as a marker for PDX formation, 20 PDX were established out of 45 HCC biopsy specimens (44%) reflecting the four major HCC etiologies most commonly identified at Memorial SloanKettering similar to many other institutions in the United States. PDX was established only in severely immunodeficient mice lacking lymphocytes and NK cells. Implantation under the renal capsule improved PDX formation two-fold compared to intrahepatic implantation. Two out of 18 biopsies required murine liver injury to establish PDX, one associated with hepatitis C virus and one with alcoholic liver disease. PDX tumors were histologically comparable to biopsy specimens and 75% of PDX lines could be passaged. CONCLUSIONS: Using cycling off nitisinone-induced liver injury, HCC biopsies implanted under the renal capsule of severely immunodeficient mice formed PDX with 57% efficiency as determined by rising hAAT levels. These findings facilitate a more efficient make-up of PDX for research into subset-specific HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Biopsy , Carcinoma, Hepatocellular/pathology , Disease Models, Animal , Heterografts , Humans , Liver Neoplasms/pathology , Mice , United States , Xenograft Model Antitumor Assays
10.
Mol Ther Methods Clin Dev ; 19: 347-361, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33145371

ABSTRACT

Limitations to successful gene therapy with adeno-associated virus (AAV) can comprise pre-existing neutralizing antibodies to the vector capsid that can block cellular entry, or inefficient transduction of target cells that can lead to sub-optimal expression of the therapeutic transgene. Recombinant serotype 3 AAV (AAV3) is an emerging candidate for liver-directed gene therapy. In this study, we integrated rational design by using a combinatorial library derived from AAV3B capsids with directed evolution by in vitro selection for liver-targeted AAV variants. The AAV3B-DE5 variant described herein was undetectable in the original viral library but gained a selective advantage upon in vitro passaging in human hepatocarcinoma spheroid cultures. AAV3B-DE5 contains 24 capsid amino acid substitutions compared with AAV3B, distributed among all five variable regions, with strong selective pressure on VR-IV, VR-V, and VR-VII. In vivo, AAV3B-DE5 demonstrated improved human hepatocyte tropism in a liver chimeric mouse model. Importantly, this variant exhibited reduced seroreactivity to human intravenous immunoglobulin (i.v. Ig), as well as individual serum samples from 100 healthy human donors. Therefore, molecular evolution using a combinatorial library platform generated a viral capsid with high hepatocyte tropism and enhanced evasion of pre-existing AAV neutralizing antibodies.

11.
Mol Ther Methods Clin Dev ; 18: 189-198, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32637450

ABSTRACT

Adeno-associated virus (AAV) vector serotypes vary in their ability to transduce hepatocytes from different species. Chimeric mouse models harboring human hepatocytes have shown translational promise for liver-directed gene therapies. However, many variables that influence human hepatocyte transduction and transgene expression in such models remain poorly defined. Here, we aimed to test whether three experimental conditions influence AAV transgene expression in immunodeficient, fumaryl-acetoactetate-hydrolase-deficient (Fah -/-) chimeric mice repopulated with primary human hepatocytes. We examined the effects of the murine liver injury cycle, human donor variability, and vector doses on hepatocyte transduction with various AAV serotypes expressing a green fluorescent protein (GFP). We determined that the timing of AAV vector challenge in the liver injury cycle resulted in up to 7-fold differences in the percentage of GFP expressing human hepatocytes. The GFP+ hepatocyte frequency varied 7-fold between human donors without, however, changing the relative transduction efficiency between serotypes for an individual donor. There was also a clear relationship between AAV vector doses and human hepatocyte transduction and transgene expression. We conclude that several experimental variables substantially affect human hepatocyte transduction in the Fah -/- chimera model, attention to which may improve reproducibility between findings from different laboratories.

12.
Cell Host Microbe ; 28(2): 335-349.e6, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32504577

ABSTRACT

Although there is no effective cure for chronic hepatitis B virus (HBV) infection, antibodies are protective and correlate with recovery from infection. To examine the human antibody response to HBV, we screened 124 vaccinated and 20 infected, spontaneously recovered individuals. The selected individuals produced shared clones of broadly neutralizing antibodies (bNAbs) that targeted 3 non-overlapping epitopes on the HBV S antigen (HBsAg). Single bNAbs protected humanized mice against infection but selected for resistance mutations in mice with prior established infection. In contrast, infection was controlled by a combination of bNAbs targeting non-overlapping epitopes with complementary sensitivity to mutations that commonly emerge during human infection. The co-crystal structure of one of the bNAbs with an HBsAg peptide epitope revealed a stabilized hairpin loop. This structure, which contains residues frequently mutated in clinical immune escape variants, provides a molecular explanation for why immunotherapy for HBV infection may require combinations of complementary bNAbs.


Subject(s)
Broadly Neutralizing Antibodies/immunology , Hepatitis B Antibodies/immunology , Hepatitis B Surface Antigens/immunology , Hepatitis B virus/immunology , Animals , Antibodies, Monoclonal/immunology , Cell Line, Tumor , Child, Preschool , Disease Models, Animal , Epitopes/immunology , Female , HEK293 Cells , Hep G2 Cells , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/immunology , Humans , Infant , Mice , Mice, Knockout , Protein Conformation
13.
Proc Natl Acad Sci U S A ; 117(3): 1678-1688, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31915293

ABSTRACT

Primary human hepatocytes (PHHs) are an essential tool for modeling drug metabolism and liver disease. However, variable plating efficiencies, short lifespan in culture, and resistance to genetic manipulation have limited their use. Here, we show that the pyrrolizidine alkaloid retrorsine improves PHH repopulation of chimeric mice on average 10-fold and rescues the ability of even poorly plateable donor hepatocytes to provide cells for subsequent ex vivo cultures. These mouse-passaged (mp) PHH cultures overcome the marked donor-to-donor variability of cryopreserved PHH and remain functional for months as demonstrated by metabolic assays and infection with hepatitis B virus and Plasmodium falciparum mpPHH can be efficiently genetically modified in culture, mobilized, and then recultured as spheroids or retransplanted to create highly humanized mice that carry a genetically altered hepatocyte graft. Together, these advances provide flexible tools for the study of human liver disease and evaluation of hepatocyte-targeted gene therapy approaches.


Subject(s)
Hepatocytes/drug effects , Hepatocytes/metabolism , Liver Diseases/genetics , Pyrrolizidine Alkaloids/pharmacology , Animals , Cell Transplantation , Chimera , Disease Models, Animal , Female , Genetic Therapy , Hepatitis B , Hepatitis B virus , Hepatocytes/transplantation , Homeodomain Proteins/genetics , Humans , Hydrolases/genetics , Interleukin Receptor Common gamma Subunit/genetics , Liver/pathology , Liver Diseases/pathology , Malaria , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Plasmodium falciparum
14.
Cell ; 175(6): 1591-1606.e19, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30500538

ABSTRACT

The mammalian liver possesses a remarkable regenerative ability. Two modes of damage response have been described: (1) The "oval cell" response emanates from the biliary tree when all hepatocytes are affected by chronic liver disease. (2) A massive, proliferative response of mature hepatocytes occurs upon acute liver damage such as partial hepatectomy (PHx). While the oval cell response has been captured in vitro by growing organoids from cholangiocytes, the hepatocyte proliferative response has not been recapitulated in culture. Here, we describe the establishment of a long-term 3D organoid culture system for mouse and human primary hepatocytes. Organoids can be established from single hepatocytes and grown for multiple months, while retaining key morphological, functional and gene expression features. Transcriptional profiles of the organoids resemble those of proliferating hepatocytes after PHx. Human hepatocyte organoids proliferate extensively after engraftment into mice and thus recapitulate the proliferative damage-response of hepatocytes.


Subject(s)
Cell Proliferation , Hepatocytes/metabolism , Organoids/metabolism , Animals , Cell Culture Techniques , Cells, Cultured , Hepatocytes/cytology , Humans , Mice , Mice, Inbred BALB C , Mice, Knockout , Organoids/cytology , Stem Cells/cytology , Stem Cells/metabolism , Time Factors
15.
Am J Pathol ; 185(2): 347-55, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25482922

ABSTRACT

Myocardial infarction and coagulation disorders are leading causes of disability and death in the world. An important role of the lectin complement pathway in myocardial infarction and coagulation has been demonstrated in mice genetically deficient in lectin complement pathway proteins. However, these studies are limited to comparisons between wild-type and deficient mice and lack the ability to examine reversal/inhibition of injury after disease establishment. We developed a novel mouse that expresses functional human mannose-binding lectin (MBL) 2 under the control of Mbl1 promoter. Serum MBL2 concentrations averaged approximately 3 µg/mL in MBL2(+/+)Mbl1(-/-)Mbl2(-/-) [MBL2 knock in (KI)] mice. Serum MBL2 level in MBL2 KI mice significantly increased after 7 (8 µg/mL) or 14 (9 µg/mL) days of hyperglycemia compared to normoglycemic mice (P < 0.001). Monoclonal antibody 3F8 inhibited C3 deposition on mannan-coated plates in MBL2 KI, but not wild-type, mice. Myocardial ischemia/reperfusion in MBL2 KI mice revealed that 3F8 preserved cardiac function and decreased infarct size and fibrin deposition in a time-dependent manner. Furthermore, 3F8 prevented ferric chloride-induced occlusive arterial thrombogenesis in vivo. MBL2 KI mice represent a novel animal model that can be used to study the lectin complement pathway in acute and chronic models of human disease. Furthermore, these novel mice demonstrate the therapeutic window for MBL2 inhibition for effective treatment of disease and its complications.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/pharmacology , Antibodies, Neutralizing/pharmacology , Disease Models, Animal , Mannose-Binding Lectin/antagonists & inhibitors , Myocardial Infarction/drug therapy , Thrombosis/drug therapy , Animals , Gene Knock-In Techniques , Humans , Mannose-Binding Lectin/blood , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/metabolism , Mice , Mice, Knockout , Myocardial Infarction/blood , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Promoter Regions, Genetic , Thrombosis/blood , Thrombosis/genetics , Thrombosis/pathology
16.
Front Immunol ; 3(15)2012 Feb 12.
Article in English | MEDLINE | ID: mdl-22375142

ABSTRACT

Hyperglycemia, in the absence of type 1 or 2 diabetes, is an independent risk factor for cardiovascular disease. We have previously demonstrated a central role for mannose binding lectin (MBL)-mediated cardiac dysfunction in acute hyperglycemic mice. In this study, we applied whole-genome microarray data analysis to investigate MBL's role in systematic gene expression changes. The data predict possible intracellular events taking place in multiple cellular compartments such as enhanced insulin signaling pathway sensitivity, promoted mitochondrial respiratory function, improved cellular energy expenditure and protein quality control, improved cytoskeleton structure, and facilitated intracellular trafficking, all of which may contribute to the organismal health of MBL null mice against acute hyperglycemia. Our data show a tight association between gene expression profile and tissue function which might be a very useful tool in predicting cellular targets and regulatory networks connected with in vivo observations, providing clues for further mechanistic studies.

17.
J Immunol ; 188(2): 885-91, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22156595

ABSTRACT

Bleeding disorders and thrombotic complications constitute a major cause of death and disability worldwide. Although it is known that the complement and coagulation systems interact, no studies have investigated the specific role or mechanisms of lectin-mediated coagulation in vivo. FeCl(3) treatment resulted in intra-arterial occlusive thrombogenesis within 10 min in wild-type (WT) and C2/factor B-null mice. In contrast, mannose-binding lectin (MBL)-null and MBL-associated serine protease (MASP)-1/-3 knockout (KO) mice had significantly decreased FeCl(3)-induced thrombogenesis. Reconstitution with recombinant human (rh) MBL restored FeCl(3)-induced thrombogenesis in MBL-null mice to levels comparable to WT mice, suggesting a significant role of the MBL/MASP complex for in vivo coagulation. Additionally, whole blood aggregation demonstrated increased MBL/MASP complex-dependent platelet aggregation. In vitro, MBL/MASP complexes were captured on mannan-coated plates, and cleavage of a chromogenic thrombin substrate (S2238) was measured. We observed no significant differences in S2238 cleavage between WT, C2/factor B-null, MBL-A(-/-), or MBL-C(-/-) sera; however, MBL-null or MASP-1/-3 KO mouse sera demonstrated significantly decreased S2238 cleavage. rhMBL alone failed to cleave S2238, but cleavage was restored when rMASP-1 was added to either MASP-1/-3 KO sera or rhMBL. Taken together, these findings indicate that MBL/MASP complexes, and specifically MASP-1, play a key role in thrombus formation in vitro and in vivo.


Subject(s)
Blood Coagulation , Carotid Artery Thrombosis/enzymology , Complement Pathway, Mannose-Binding Lectin , Mannose-Binding Protein-Associated Serine Proteases/physiology , Animals , Blood Coagulation/immunology , Carotid Artery Thrombosis/chemically induced , Carotid Artery Thrombosis/genetics , Chlorides/toxicity , Complement Pathway, Mannose-Binding Lectin/genetics , Disease Models, Animal , Ferric Compounds/toxicity , Humans , Immunity, Innate/genetics , Mannose-Binding Lectins/deficiency , Mannose-Binding Lectins/genetics , Mannose-Binding Protein-Associated Serine Proteases/adverse effects , Mannose-Binding Protein-Associated Serine Proteases/deficiency , Mannose-Binding Protein-Associated Serine Proteases/genetics , Mice , Thrombin/physiology
18.
Zhongguo Zhong Yao Za Zhi ; 34(7): 889-92, 2009 Apr.
Article in Chinese | MEDLINE | ID: mdl-19623989

ABSTRACT

OBJECTIVE: To investigate the effect of qianjin huanglian pill on kidney in monosodium L-glutamate (MSG)-treated insulin resistance (IR) mice. METHOD: The ameliorative effect of qianjin huanglian pill on IR in MSG mice was evaluated in comparison with rosiglitazone (Ros). The fasting serum glucose, fasting serum insulin, insulin sensitivity index, urinary albumin excretion, glomerular diameter and pathological changes of kidney were investigated in the evaluation. RESULT: After 2 weeks of qianjin huanglian pill treatment, the urinary albumin excretion (UAE) was reduced in low-dose group (P < 0.05) as compared with the model group. After 4 weeks of qianjin huanglian pill treatment, the fasting serum glucose was reduced in high-dose group (P < 0.001 compared with the model group). ISI of mice was ameliorated in high-dose group (P < 0.05 compared with the model group). The glomerular diameter was decreased, the hyperplasia of glomerulus was ameliorated in high-dose and low-dose groups (P < 0.01 compared with model group). CONCLUSION: In MSG mice, we found qianjin huanglian pill could increase insulin sensitivity, decrease the urinary albumin excretion, ameliorate the pathological changes of kidney due to insulin resistance.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Insulin Resistance , Kidney/drug effects , Animals , Blood Glucose/metabolism , Chemistry, Pharmaceutical , Dose-Response Relationship, Drug , Female , Kidney/pathology , Kidney Glomerulus/drug effects , Kidney Glomerulus/pathology , Male , Mice , Sodium Glutamate/toxicity
19.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 29(3): 242-5, 2009 Mar.
Article in Chinese | MEDLINE | ID: mdl-19548443

ABSTRACT

OBJECTIVE: To investigate the influence of modified Qianjin Huanglian Pill (QJHL), a Chinese herbal compound, on pancreas in mice with monosodium L-glutamate (MSG) induced insulin resistance (IR) and its molecular mechanism. METHODS: Controlled by rosiglitazone (Ros), the MSG indiced IR mice were treated with QJHL for 28 days. The laboratory indices were examined including fasting serum glucose (FSG), fasting serum insulin (FSI), insulin sensitivity index (ISI), and morphological changes of pancreas, and levels of insulin receptor (InsR), insulin receptor substrate (IRS1/2) and glucose transporter (GLUT2) mRNA expression in pancreas tissue were determined by the reverse transcriptase polymerase chain reaction (RT-PCR). RESULTS: As compared with the model group, the level of FSG was lower (P < 0.01) and ISI was higher (P < 0.05) after treatment in the QJHL treated group, with pancreatic islet hyperplasia and hypertrophy ameliorated significantly (P < 0.01). And these changes were similar to those in the Ros treated group (P > 0.05). Moreover, the level of GLUT2 mRNA expression in pancreas of the QJHL group increased significantly (P < 0.01), while it was unchanged in the Ros group. CONCLUSION: QJHL could reduce IR, ameliorate pathological changes of pancreas, which is possibly related with its action on increasing GLUT2 mRNA expression in the pancreas tissue.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Insulin Resistance , Insulin/blood , Pancreas/pathology , Animals , Animals, Newborn , Blood Glucose/metabolism , Glucose Transporter Type 2/genetics , Glucose Transporter Type 2/metabolism , Mice , Mice, Inbred ICR , Pancreas/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sodium Glutamate
20.
Diabetes ; 57(7): 1824-33, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18375436

ABSTRACT

OBJECTIVE: Adiponectin is an adipocyte-derived hormone that plays an important role in glucose and lipid metabolism. The main aims of this study are to investigate the effects of adiponectin on VLDL triglyceride (VLDL-TG) metabolism and the underlying mechanism. RESEARCH DESIGN AND METHODS: Adenoviruses were used to generate a mouse model with elevated circulating adiponectin. HepG2 and C2C12 cells were treated with recombinant human adiponectin. RESULTS: Three days after Ad-mACRP30 adenovirus injection, plasma adiponectin protein levels were increased 12-fold. All three main multimeric adiponectin molecules were proportionally elevated. Fasting plasma TG levels were significantly decreased (approximately 40%) in the mice with elevated adiponectin in circulation, as were the plasma levels of large and medium VLDL subclasses. Although apolipoprotein B mRNA levels were robustly suppressed in the livers of adiponectin-overexpressing mice and in cultured HepG2 cells treated with recombinant human adiponectin, hepatic VLDL-TG secretion rates were not altered by elevated plasma adiponectin. However, Ad-mACRP30-treated mice exhibited a significant increase of postheparin plasma lipoprotein lipase (LPL) activity compared with mice that received control viral vector. Skeletal muscle LPL activity and mRNA levels of LPL and VLDL receptor (VLDLr) were also increased in Ad-mACRP30-treated mice. Recombinant human adiponectin treatment increased LPL and VLDLr mRNA levels in differentiated C1C12 myotubes. CONCLUSIONS: These results suggest that adiponectin decreases plasma TG levels by increasing skeletal muscle LPL and VLDLr expression and consequently VLDL-TG catabolism.


Subject(s)
Adiponectin/pharmacology , Lipoproteins, VLDL/blood , Lipoproteins, VLDL/drug effects , Triglycerides/blood , Adenoviridae/physiology , Adiponectin/blood , Adiponectin/genetics , Animals , Apolipoproteins B/genetics , Cell Line , Cell Line, Tumor , Cloning, Molecular , DNA Primers , Humans , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , RNA, Messenger/drug effects , RNA, Messenger/genetics , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...