Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Med Sci ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009282

ABSTRACT

BACKGROUND: Whether Astragalus membranaceus is an effective drug in treatment of ulcerative colitis (UC) and how it exhibit activity effect on UC is unclear. METHODS: TCMSP, GeneCards, String, and DAVID database were used to screening target genes construct PPI network and performed for GO and KEGG pathway enrichment analysis respectively. Molecular docking and animal experiment were performed. The body weight and disease activity index (DAI) of mice were recorded. ELISA kits were used to detect the levels of CAT, SOD, MDA and IL-6, IL-10, TNF-α in the blood of mice. Western blot kits were utilized to measured the expressions of MAPK14, RB1, MAPK1, JUN, ATK1, and IL2 proteins. RESULTS: The active components of Astragalus membranaceus mainly including 7-O-methylisomucronulatol, quercetin, kaempferol, formononetin and isrhamnetin. Astragalus membranaceus may inhibited the expression of TNF-α, IL-6, MDA, and promoted the expression of CAT, SOD, IL-10. The expression levels of MAPK14, RB1, MAPK1, JUN and ATK1 proteins were significantly decreased while IL2 protein increased administrated with Astragalus membranaceus. CONCLUSIONS: Astragalus membranaceus is an effective drug in treatment of UC according to related to above targets that may exhibits the anti-UC effect via its antioxidant pathway and regulating the balance of pro-inflammatory and anti-inflammatory factors.

2.
Vet Microbiol ; 295: 110148, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851152

ABSTRACT

Water buffalo Hunnivirus (BufHuV) belongs to the family Picornaviridae and is a newly discovered member of the Hunnivirus A genus. It causes intestinal diseases in cattle, mainly lead to subclinical infections, thereby seriously threatening the health of cattle herds. In addition, it can also bring about various clinical disease syndromes which results in severe economic losses to the cattle industry. To date, there have been no reports worldwide on the study of Hunnivirus virus infecting host cells and causing innate immune responses. In this study, we found that interferon treatment effectively blocked BufHuV replication and infection with the virus weakened the host antiviral responses. Inhibiting the transcription of IFN-ß and ISGs induced by either Sendai virus (SeV) or poly(I:C) in MDBK and HCT-8 cells, were dependent on the IRF3 or NF-κB signaling pathways, and this inhibited the activation of IFN-ß promoter by TBK1 and its upstream molecules, RIGI and MDA5. By constructing and screening five BufHuV proteins, we found that VP2, 2 C, 3 C and 3D inhibited the activation of IFN-ß promoter induced by SeV. Subsequently, we showed that VP2 inhibited the activation of IRF3 induced by SeV or poly (I:C), and it inhibited IRF3 activation by inhibiting its phosphorylation and nuclear translocation. In addition, we confirmed that VP2 inhibited the activation of IFNß induced by signaling molecules, MDA5 and TBKI. In summary, these findings provide new insights into the pathogenesis of Hunnivirus and its mechanisms involved in evading host immune responses.


Subject(s)
Interferon Regulatory Factor-3 , Interferon-beta , Interferon-beta/genetics , Interferon-beta/immunology , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Animals , Humans , Cell Line , Signal Transduction/drug effects , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism , Virus Replication/drug effects , Immunity, Innate , Cattle , Buffaloes/virology , NF-kappa B/metabolism
3.
PLoS One ; 18(6): e0287147, 2023.
Article in English | MEDLINE | ID: mdl-37310979

ABSTRACT

OBJECTIVE: To identify the most effective fraction of Nanocnide lobata in the treatment of burn and scald injuries and determine its bioactive constituents. METHODS: Chemical identification methods were used to analyze solutions extracted from Nanocnide lobata using petroleum ether, ethyl acetate, n-butanol using a variety of color reactions. The chemical constituents of the extracts were identified by ultra-performance liquid chromatography (UPLC)-mass spectrometry (MS). A total of 60 female mice were randomly divided into the following 6 groups: the petroleum ether extract-treated group; the ethyl acetate extract-treated group; the n-butanol extract-treated group; the model group; the control group; and the positive drug group. The burn/scald model was established using Stevenson's method. At 24 hours after modeling, 0.1 g of the corresponding ointment was evenly applied to the wound in each group. Mice in the model group did not undergo treatment, while those in the control group received 0.1 g of Vaseline. Wound characteristics, including color, secretions, hardness, and swelling, were observed and recorded. Photos were taken and the wound area calculated on the 1st, 5th, 8th, 12th, 15th, 18th and 21st days. Hematoxylin-eosin (HE) staining was utilized to observe the wound tissue of mice on the 7th, 14th, and 21st days. An enzyme-linked immunosorbent assay (ELISA) kit was used to measure the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-10, vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-ß1. RESULTS: The chemical constituents of Nanocnide lobata mainly include volatile oils, coumarins, and lactones. UPLC-MS analysis revealed 39 main compounds in the Nanocnide lobata extract. Among them, ferulic acid, kaempferitrin, caffeic acid, and salicylic acid have been confirmed to exhibit anti-inflammatory and antioxidant activity related to the treatment of burns and scalds. HE staining revealed a gradual decrease in the number of inflammatory cells and healing of the wounds with increasing time after Nanocnide lobata extract administration. Compared with the model group, the petroleum ether extract-treated group showed significant differences in the levels of TNF-α (161.67±4.93, 106.33±3.21, 77.67±4.04 pg/mL) and IL-10 (291.77±4.93, 185.09±9.54, 141.33±1.53 pg/mL) on the 7th, 14th, and 21st days; a significant difference in the content of TGF-ß1 (75.68±3.06 pg/mL) on the 21st day; and a significant difference in the level of VEGF (266.67±4.73, 311.33±10.50 pg/mL) on the 7th and 14th days respectively. CONCLUSION: Petroleum ether Nanocnide lobata extract and the volatile oil compounds of Nanocnide lobata might be effective drugs in the treatment of burn and scald injuries, as they exhibited a protective effect on burns and scalds by reducing the expression of TNF-α, IL-10 and TGF-ß1 and increasing the expression of VEGF. In addition, these compounds may also exert pharmacological effects that promote wound tissue repair, accelerate wound healing, and reduce scar tissue proliferation, inflammation and pain.


Subject(s)
Burns , Interleukin-10 , Female , Animals , Mice , Transforming Growth Factor beta1 , Vascular Endothelial Growth Factor A , 1-Butanol , Chromatography, Liquid , Tumor Necrosis Factor-alpha , Tandem Mass Spectrometry , Burns/drug therapy
4.
Microbiol Spectr ; : e0378522, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36877012

ABSTRACT

Bovine enterovirus (BEV) is a highly infectious pathogen that may cause respiratory and gastrointestinal disease outbreaks in cattle. This study aimed to investigate the prevalence and genetic characteristics of BEVs in Guangxi Province, China. A total of 1,168 fecal samples from 97 different bovine farms were collected between October 2021 and July 2022 in Guangxi Province, China. BEV was confirmed using a reverse transcription-PCR (RT-PCR) method targeting the 5' untranslated region (UTR), and isolates were genotyped by sequencing their genomes. The nearly complete genome sequences of eight BEV strains showing cytopathic effects in MDBK cells were determined and analyzed. In total, 125 (10.7%) of 1,168 fecal samples were positive for BEV. BEV infection was significantly associated with farming patterns and clinical symptoms (P < 0.05; odds ratio [OR] > 1). Molecular characterization indicated that five BEV strains from this study belonged to EV-E2 and one strain to EV-E4. Two BEV strains (GXNN2204 and GXGL2215) could not be assigned to a known type. Strain GXGL2215 showed the closest genetic relationship with GX1901 (GenBank accession number MN607030; China) in its VP1 (67.5%) and P1 (74.7%) and with NGR2017 (MH719217; Nigeria) in its polyprotein (72.0%). It was also close to the EV-E4 strain GXYL2213 from this study when the complete genome (81.7%) was compared. Strain GXNN2204 showed the closest genetic relationship with Ho12 (LC150008; Japan) in the VP1 (66.5%), P1 (71.6%), and polyprotein (73.2%). Genome sequence analysis suggested that strains GXNN2204 and GXGL2215 originated from the genomic recombination of EV-E4 and EV-F3 and EV-E2 and EV-E4, respectively. This study reports the cocirculation of multiple BEV types and the identification of two novel BEV strains in Guangxi, China, and it will provide further insights into the epidemiology and evolution of BEV in China. IMPORTANCE Bovine enterovirus (BEV) is a pathogen that causes intestinal, respiratory, and reproductive disease infections in cattle. This study reports on the widespread prevalence and biological characteristics of the different BEV types which currently exist in Guangxi Province, China. It also provides a reference for the study of the prevalence of BEV in China.

5.
Front Vet Sci ; 9: 851743, 2022.
Article in English | MEDLINE | ID: mdl-35498751

ABSTRACT

In recent years, hunniviruses have been reported in a variety of animal species from many countries. Here, hunnivirus was detected in fecal samples from water buffaloes and named as BufHuV-GX-2106. The samples were inoculated into cultures of MDBK cells supplemented with TPCK trypsin and the BufHuV-GX-2106 strain was stably passaged and replicated. Electron microscopic analysis showed the BufHuV-GX-2106 virus particles were spherical and 20~30 nm in diameter. The complete genome of a plaque purified sample of BufHuV-GX-2106 was determined and analyzed. Genomic analysis revealed that the whole sequence of BufHuV-GX-2106 was ~7,601 nucleotides (nt) in length and consisted of a large open reading frame of 6,759nt, a 5'UTR, a 3'UTR and a poly(A) tail. The complete genome sequence of BufHuV-GX-2106 shares 68-85% nucleotide identities with other known hunnivirus strains, indicating high genetic heterogeneity among these viruses. Phylogenetic analysis showed that BufHuV-GX-2106 belonged to the Hunnivirus A species and was more closely related to ovine hunnivirus than other known viruses of this type. This study describes the first isolation and complete genome sequence of a hunnivirus strain from water buffaloes. In addition, this study will help to understand the mechanisms involved in the pathogenesis of Hunnivirus A among different animal species.

6.
J Asian Nat Prod Res ; 19(12): 1172-1176, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28366016

ABSTRACT

Two new long-chain unsaturated compounds, (2E, 6E)-10-methoxy-3,7-dimethyl-10-oxodeca-2,6-dienoic acid (1) and (2E, 6E)-3,7,11-trimethyldodeca-2,6-dienedioic acid (2), together with seven known compounds were isolated from a marine-derived Streptomyces sp. Their structures were determined by spectroscopic methods, including 2D NMR techniques. Compounds 1 and 2 were investigated for their antibacterial activities.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Fatty Acids, Unsaturated/isolation & purification , Streptomyces/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/pharmacology , Marine Biology , Microbial Sensitivity Tests , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular
7.
Nat Prod Res ; 31(9): 1034-1041, 2017 May.
Article in English | MEDLINE | ID: mdl-27931116

ABSTRACT

One new compound, himalain A (1), together with 12 known compounds were isolated from Mirabilis himalaica. Their structures were determined by spectroscopic methods, including 2D NMR techniques, and the absolute configuration of the 1,2-diol moiety in 1 was defined through Riguera's method. All isolated compounds were tested for their cytotoxic and antibacterial activities.


Subject(s)
Mirabilis/chemistry , Phenyl Ethers/isolation & purification , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Humans , Phenyl Ethers/chemistry , Phenyl Ethers/pharmacology
8.
Chin J Nat Med ; 12(9): 689-92, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25263981

ABSTRACT

AIM: To study the dibenzocylooctadiene lignans from the stems of Kadsura heteroclita. METHOD: Chromatographic separations of silica gel and semi-preparative HPLC were used. All of the structures were elucidated on the basis of spectroscopic analysis, including 2D-NMR and HR-MS techniques. RESULTS: Four dibenzocylooctadiene lignans were isolated from K. heteroclita. Their structures were identified as heteroclitin R (1), heteroclitin S (2), gonisin O (3), and schisanlignone A (4). CONCLUSION: Heteroclitin R (1) and heteroclitin S (2) are new natural lignans.


Subject(s)
Kadsura/chemistry , Lignans/isolation & purification , Plant Extracts/chemistry , Lignans/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL