Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Epidemiol Infect ; 152: e75, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38634450

This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 µg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 µg/ml and ≤ 1 µg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.


Anti-Bacterial Agents , Drug Resistance, Bacterial , Macrolides , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Mycoplasma pneumoniae/drug effects , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Humans , China/epidemiology , Macrolides/pharmacology , Retrospective Studies , Child , Anti-Bacterial Agents/pharmacology , Child, Preschool , Adolescent , Adult , Female , Male , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Mycoplasma/microbiology , Pneumonia, Mycoplasma/drug therapy , Middle Aged , Young Adult , Microbial Sensitivity Tests , Aged , Infant , Prevalence , RNA, Ribosomal, 23S/genetics , Aged, 80 and over
2.
Allergol Immunopathol (Madr) ; 52(2): 16-22, 2024.
Article En | MEDLINE | ID: mdl-38459886

BACKGROUND: Sepsis is a life-threatening condition characterized by acute organ dysfunction, which frequently leads to acute lung injury (ALI) in approximately 40% of cases. Isoegomaketone (IK) is a constituent of essential oil found in P. frutescens, known for its diverse biological properties, including anti-inflammatory and antitumor effects. However, the regulatory impact of IK on ALI in the context of sepsis remains poorly understood. METHODS: Pathological alterations in lung tissues were assessed using hematoxylin and eosin staining. Enumeration of total leukocytes and neutrophils in bronchoalveolar lavage fluid (BALF) was performed using a hematocytometer, while the levels of interleukin (IL)-6, IL-1ß, IL-10, and IL-17 in BALF were quantified using enzyme-linked immunosorbent serological assay. In addition, the levels of malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), and glutathione (GSH) in lung tissues were assessed using respective commercial kits; cell apoptosis was evaluated using the terminal deoxynucleotide transferase--mediated dUTP nick end-labeling assay, and protein expressions were determined through Western blot analysis. RESULTS: Our findings revealed that cecal ligation and puncture (CLP) treatment in mice induced severe lung injury, characterized by increased lung injury scores, significant bleeding, neutrophil infiltration, and alveolar edema. However, treatment with IK at a dose of 10 mg/kg ameliorated CLP-induced lung injury, while IK dose of 5 mg/kg showed no significant effect. Additionally, IK treatment at 10 mg/kg reduced CLP-induced inflammation by decreasing levels of IL-6, IL-1ß, IL-10, and IL-17. Furthermore, IK at 10 mg/kg attenuated CLP-induced oxidative stress by modulating levels of MDA, MPO, SOD, and GSH. Moreover, IK treatment with a dose of 10 mg/kg activated the nuclear factor erythroid 2-related factor 2-heme oxygenase-1 (Nrf2-HO-1) pathway by enhancing the protein expressions of Nrf2 and HO-1. CONCLUSION: This study demonstrates that IK could mitigate the inflammatory response and oxidative stress associated with sepsis-induced ALI, supporting IK as a promising therapeutic agent for the treatment of sepsis-associated ALI.


Acute Lung Injury , Furans , Ketones , Sepsis , Mice , Animals , Interleukin-10/metabolism , Interleukin-17/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , NF-E2-Related Factor 2/therapeutic use , Lung/pathology , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Oxidative Stress , Interleukin-6/metabolism , Sepsis/drug therapy , Sepsis/complications , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , Superoxide Dismutase/therapeutic use
3.
Allergol. immunopatol ; 52(2): 16-22, mar. 2024. graf, ilus
Article En | IBECS | ID: ibc-231084

Background: Sepsis is a life-threatening condition characterized by acute organ dysfunction, which frequently leads to acute lung injury (ALI) in approximately 40% of cases. Isoegomaketone (IK) is a constituent of essential oil found in P. frutescens, known for its diverse biological properties, including anti-inflammatory and antitumor effects. However, the regulatory impact of IK on ALI in the context of sepsis remains poorly understood. Methods: Pathological alterations in lung tissues were assessed using hematoxylin and eosin staining. Enumeration of total leukocytes and neutrophils in bronchoalveolar lavage fluid (BALF) was performed using a hematocytometer, while the levels of interleukin (IL)-6, IL-1β, IL-10, and IL-17 in BALF were quantified using enzyme-linked immunosorbent serological assay. In addition, the levels of malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), and glutathione (GSH) in lung tissues were assessed using respective commercial kits; cell apoptosis was evaluated using the terminal deoxynucleotide transferase--mediated dUTP nick end-labeling assay, and protein expressions were determined through Western blot analysis. Results: Our findings revealed that cecal ligation and puncture (CLP) treatment in mice induced severe lung injury, characterized by increased lung injury scores, significant bleeding, neutrophil infiltration, and alveolar edema. However, treatment with IK at a dose of 10 mg/kg ameliorated CLP-induced lung injury, while IK dose of 5 mg/kg showed no significant effect. Additionally, IK treatment at 10 mg/kg reduced CLP-induced inflammation by decreasing levels of IL-6, IL-1β, IL-10, and IL-17. Furthermore, IK at 10 mg/kg attenuated CLP-induced oxidative stress by modulating levels of MDA, MPO, SOD, and GSH... (AU)


Rats , Sepsis , Acute Lung Injury , Oils, Volatile , Perilla frutescens , Anti-Inflammatory Agents , Drug Screening Assays, Antitumor , Staining and Labeling , Hematoxylin
4.
Sci Total Environ ; 915: 170153, 2024 Mar 10.
Article En | MEDLINE | ID: mdl-38232821

Precipitation is a vital component of the global atmospheric and hydrological cycles and influencing the distribution of water resources. Even subtle changes in precipitation can significantly impact ecosystems, energy cycles, agricultural production, and food security. Therefore, understanding the changes in the precipitation structure under climate change is essential. The Qinghai-Tibet Plateau (QTP) is a region sensitive to global climate change and profoundly impacts the atmospheric water cycle in Asia and even globally, rendering it a hot topic in climate change research in recent years. Few studies have examined on the sub-daily scale precipitation structure over the QTP. In this paper, the characteristics of sub-daily precipitation on the QTP were systematically investigated from multiple perspectives, including the concentration index, skewness (the third standardized moment of a distribution), and kurtosis (the fourth standardized moment of a distribution). The results indicated that the frequency of moderate-intensity nighttime precipitation on the QTP generally increased, and the analysis of both the concentration index and kurtosis (skewness) suggested that extreme precipitation was more frequent in the southwestern foothills of the QTP. Furthermore, potential high-risk areas for natural disasters were identified on the QTP, and found that the southeastern part of the plateau constituted a potential hotspot area for flood disasters. Given the complexity of climate change, a comprehensive analysis of the spatiotemporal characteristics of diurnal and nighttime precipitation changes on the QTP could help reveal the regularity of precipitation changes. This has significant implications for forecasting, warning, disaster preparedness, and mitigation efforts on the QTP.

5.
BMC Infect Dis ; 20(1): 952, 2020 Dec 11.
Article En | MEDLINE | ID: mdl-33308159

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2, and outbreaks have occurred worldwide. Laboratory test results are an important basis for clinicians to determine patient condition and formulate treatment plans. METHODS: Fifty-two thousand six hundred forty-four laboratory test results with continuous values of adult inpatients who were diagnosed with COVID-19 and hospitalized in the Fifth Hospital in Wuhan between 16 January 2020 and 18 March 2020 were compiled. The first and last test results were compared between survivors and non-survivors with variance test or Welch test. Laboratory test variables with significant differences were then included in the temporal change analysis. RESULTS: Among 94 laboratory test variables in 82 survivors and 25 non-survivors with COVID-19, white blood cell count, neutrophil count/percentage, mean platelet volume, platelet distribution width, platelet-large cell percentage, hypersensitive C-reactive protein, procalcitonin, D-dimer, fibrin (ogen) degradation product, middle fluorescent reticulocyte percentage, immature reticulocyte fraction, lactate dehydrogenase were significantly increased (P < 0.05), and lymphocyte count/percentage, monocyte percentage, eosinophil percentage, prothrombin activity, low fluorescent reticulocyte percentage, plasma carbon dioxide, total calcium, prealbumin, total protein, albumin, albumin-globulin ratio, cholinesterase, total cholesterol, nonhigh-density/low-density/small-dense-low-density lipoprotein cholesterol were significantly decreased in non-survivors compared with survivors (P < 0.05), in both first and last tests. Prothrombin time, prothrombin international normalized ratio, nucleated red blood cell count/percentage, high fluorescent reticulocyte percentage, plasma uric acid, plasma urea nitrogen, cystatin C, sodium, phosphorus, magnesium, myoglobin, creatine kinase (isoenzymes), aspartate aminotransferase, alkaline phosphatase, glucose, triglyceride were significantly increased (P < 0.05), and eosinophil count, basophil percentage, platelet count, thrombocytocrit, antithrombin III, red blood cell count, haemoglobin, haematocrit, total carbon dioxide, acidity-basicity, actual bicarbonate radical, base excess in the extracellular fluid compartment, estimated glomerular filtration rate, high-density lipoprotein cholesterol, apolipoprotein A1/ B were significantly decreased in non-survivors compared with survivors (P < 0.05), only in the last tests. Temporal changes in 26 variables, such as lymphocyte count/percentage, neutrophil count/percentage, and platelet count, were obviously different between survivors and non-survivors. CONCLUSIONS: By the comprehensive usage of the laboratory markers with different temporal changes, patients with a high risk of COVID-19-associated death or progression from mild to severe disease might be identified, allowing for timely targeted treatment.


Biomarkers/blood , COVID-19/blood , Survivors/statistics & numerical data , C-Reactive Protein/metabolism , Female , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Inpatients/statistics & numerical data , Leukocyte Count , Lymphocyte Count , Male , Middle Aged , Neutrophils , Pandemics , Procalcitonin/blood , Retrospective Studies , SARS-CoV-2 , Time Factors
6.
Bioengineered ; 7(2): 98-105, 2016 Apr 02.
Article En | MEDLINE | ID: mdl-27002778

A novel bioflocculant CBF with high flocculating activity, produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaericus F6 from soil, was investigated with regard to its production and flocculation performance in Al(III) removal. The most preferred carbon source, nitrogen source and C/N ratio (w/w) for strains F2 and F6 to produce CBF were glucose, urea and 20, respectively. The optimal inoculum size for CBF production was 10 % (v/v). The optimal initial pH, culture temperature and shaking speed were 7-8, 30°C and 140 r/min for 24 h, respectively, under which the flocculating activity of the bioflocculant reached 98.52 %. According to literature review, flocculant dosage, coagulant aid dosage, pH, hydraulic condition of coagulation and sedimentation time are considered as influencing parameters for CBF flocculation performance in Al(III) removal by L16(4(5)) orthogonal design. The optimal conditions for Al(III) removal obtained through analysis and verification experiments were as follows: CBF, 28 mg/L; coagulant aid, 1.5 mL/L; initial pH, 8.0; and hydraulic conditions of coagulation: stir speed, 160 r/min; stir time, 40 s; and sedimentation time, 30 min. Under the optimal conditions, the removal efficiency of Al(III) was 92.95 %. Overall, these findings indicate that bioflocculant CBF offers an effective alternative method of decreasing Al(III) during drinking water treatment.


Agrobacterium tumefaciens/chemistry , Aluminum/isolation & purification , Bacillus/chemistry , Polysaccharides, Bacterial/isolation & purification , Soil Microbiology , Water Pollutants, Chemical/isolation & purification , Agrobacterium tumefaciens/growth & development , Agrobacterium tumefaciens/metabolism , Bacillus/growth & development , Bacillus/metabolism , Carbon/chemistry , Carbon/metabolism , Culture Media/chemistry , Drinking Water/chemistry , Flocculation , Glucose/chemistry , Glucose/metabolism , Hydrogen-Ion Concentration , Nitrogen/chemistry , Nitrogen/metabolism , Polysaccharides, Bacterial/biosynthesis , Temperature , Urea/chemistry , Urea/metabolism , Water Purification/methods
7.
Wien Klin Wochenschr ; 127(15-16): 606-11, 2015 Aug.
Article En | MEDLINE | ID: mdl-25835591

OBJECTIVE: To investigate the effects of high-frequency oscillatory ventilation (HFOV) and partial liquid ventilation (PLV) on apoptosis of lung tissue induced by steam inhalation injury in rabbit. DESIGN: A prospective, randomized, controlled, multiple-group study. SETTING: An animal research laboratory centre in a university burns centre. SUBJECTS: New Zealand rabbits (n = 32; 2.25 ± 0.25 kg) of either sex. INTERVENTIONS: The animals were ventilated by HFOV with a mean airway pressure of 10 cm H2O, a frequency of 10 Hz, an amplitude of 20 cm H2O, an inspiratory:expiratory ratio of 1:1, and an FiO2 of 1.0. After the induction of acute lung injury (ALI) by steam inhalation, the animals were randomly divided into four groups: CMV, HFOV, CMV + PLV, HFOV + PLV group. Then they were ventilated for 4 h by CMV, HFOV, CMV + PLV and HFOV + PLV, respectively. After the experimental period, cell apoptosis and apoptosis indexes in the lung tissue were assessed with TUNEL FragELTM (Fragment End Labeling). RESULTS: Lung tissue apoptosis indexes in HFOV group and HFOV + PLV group were lower than that of in CMV group and CMV + PLV group; between-group comparison had significant difference (P < 0.01). HFOV + PLV group showed lowest apoptosis indexes. CONCLUSION: HFOV combined with PLV can suppress lung tissue apoptosis induced by steam inhalation.


Apoptosis , High-Frequency Ventilation/methods , Liquid Ventilation/methods , Lung Injury/pathology , Lung Injury/therapy , Lung/pathology , Animals , Combined Modality Therapy/methods , Female , Male , Rabbits , Treatment Outcome
...