Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123200, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37549458

ABSTRACT

Aiming to combine the advantages of both prompt fluorescence and thermally activated delayed fluorescence in single emitter, molecular design of emitters with hybridized locally excited and charge transfer states were investigated by computational approaches and optical spectroscopy. Taking into account the results of the theoretical screening, the most promising derivatives of 9,9-dimethyl-9,10-dihydroacridine and 10-phenyl-10H-phenothiazine-5,5-dioxide based with the different linking topology (meta- and para-isomers) were selected for the synthesis and experimental investigations. Both the compounds exhibit ultraviolet LE emission peaking at ca. 360 nm, green ICT peaking at ca. 510 nm, and deep-blue HLCT emission peaking at ca. 430 nm when they are molecularly dispersed in the solid media of the different polarity. The developed emitters allow to obtain deep-blue electroluminescence for the host-containing OLEDs and green electroluminescence of host-free devices with the efficiency of exciton production of 42 and 73%, respectively. Efficient exciton production is due to the spin-flip switching via thermally activated processes which is much more efficient than prompt fluorescence. Showing the impact of the linking topology, the para-isomer demonstrated more efficient triplet harvesting in OLEDs than meta-isomer. A detailed discussion on the structure-property relationships and on some discrepancies between the results of the results of theoretical calculations and spectral analysis allows to obtain important insights on the photophysical properties of these compounds.

2.
Molecules ; 28(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37446684

ABSTRACT

The iconic caged shape of fullerenes gives rise to a series of unique chemical and physical properties; hence a deeper understanding of the attractive and repulsive forces between two buckyballs can bring detrimental information about the structural stability of such complexes, providing significant data applicable for several studies. The potential energy curves for the interaction of multiple van der Waals buckyball complexes with increasing mass were theoretically obtained within the DFT framework at ωB97xD/6-31G(d) compound model. These potential energy curves were employed to estimate the spectroscopic constants and the lifetime of the fullerene complexes with the Discrete Variable Representation and with the Dunham approaches. It was revealed that both methods are compatible in determining the rovibrational structure of the dimers and that they are genuinely stable, i.e., long-lived complexes. To further inquire into the nature of such interaction, Bader's QTAIM approach was applied. QTAIM descriptors indicate that the interactions of these closed-shell systems are dominated by weak van der Waals forces. This non-covalent interaction character was confirmed by the RDG analysis scheme. Indirectly, QTAIM also allowed us to confirm the stability of the non-covalent bonded fullerene dimers. Our lifetime calculations have shown that the studied dimers are stable for more than 1 ps, which increases accordingly with the number of carbon atoms.


Subject(s)
Fullerenes , Fullerenes/chemistry , Carbon , Spectrum Analysis , Physical Phenomena
3.
Sci Rep ; 12(1): 15848, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36151225

ABSTRACT

The global increase in drug consumption exposes the growing need to develop new systems for the detection, capture, and treatment of bioactive molecules. Carbamazepine is one instance of such contaminants at the top of the ranking commonly found in sewage treatment systems. This work, therefore, presents a theoretical study of fullerene C60 and its derivatives with substitutional doping with B, Al, Ga, Si, Ge, N and P, for the detection and capture of carbamazepine is aqueous medium. Solvation effects were included by means of the Polarizable Continuum Solvent method. The results indicate that doped fullerenes are sensitive for the detection of carbamazepine both in gaseous and aquatic environments. Investigation on the intermolecular interactions between the drug and the fullerene molecule were carried out, allowing the characterization of the interactions responsible for stabilizing the adsorption of carbamazepine to the fullerenes. The theoretical survey revealed that fullerenes doped with Al, Ga, Si and Ge chemically adsorb carbamazepine whereas for the case of fullerenes doped with other heteroatoms physisorption is responsible for the molecular recognition. Relying on DFT calculations, the fullerene derivatives C59Al, C59Si and C59Ga are the most suitable to act both as a sensor and to uptake carbamazepine in aquatic environments.


Subject(s)
Fullerenes , Carbamazepine , Fullerenes/chemistry , Models, Theoretical , Sewage , Solvents
4.
Molecules ; 27(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35566318

ABSTRACT

In this work, a theoretical investigation of the effects caused by the doping of C20 with silicon (Si) atom as well as the adsorption of CO, CO2 and N2 gases to C20 and C19Si fullerenes was carried out. In concordance with previous studies, it was found that the choice of the doping site can control the structural, electronic, and energetic characteristics of the C19Si system. The ability of C20 and C19Si to adsorb CO, CO2 and N2 gas molecules was evaluated. In order to modulate the process of adsorption of these chemical species to C19Si, an externally oriented electric field was included in the theoretical calculations. It was observed that C19Si is highly selective with respect to CO adsorption. Upon the increase of the electric field intensity the adsorption energy was magnified correspondingly and that the interaction between CO and C19Si changes in nature from a physical adsorption to a partial covalent character interaction.

5.
Molecules ; 26(18)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34576963

ABSTRACT

X-ray structural determinations and computational studies were used to investigate halogen interactions in two halogenated oxindoles. Comparative analyses of the interaction energy and the interaction properties were carried out for Br···Br, C-H···Br, C-H···O and N-H···O interactions. Employing Møller-Plesset second-order perturbation theory (MP2) and density functional theory (DFT), the basis set superposition error (BSSE) corrected interaction energy (Eint(BSSE)) was determined using a supramolecular approach. The Eint(BSSE) results were compared with interaction energies obtained by Quantum Theory of Atoms in Molecules (QTAIM)-based methods. Reduced Density Gradient (RDG), QTAIM and Natural bond orbital (NBO) calculations provided insight into possible pathways for the intermolecular interactions examined. Comparative analysis employing the electron density at the bond critical points (BCP) and molecular electrostatic potential (MEP) showed that the interaction energies and the relative orientations of the monomers in the dimers may in part be understood in light of charge redistribution in these two compounds.

6.
Dalton Trans ; 48(30): 11520-11535, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31294426

ABSTRACT

The synthesis and characterization of a series of cyclometallated complexes of Pd(ii) incorporating the mixed donor ligand 1-oxa-4,7-dithiacyclononane ([9]aneS2O) are presented in this study. Complexes of the form [Pd(C^N)([9]aneS2O)](PF6) (C^N = 2-phenylpyridine (ppy) 1b, 4-(2-pyridyl)benzaldehyde (ppyCHO) 2b, 7,8-benzoquinoline (bzq) 3b, 2-benzothienylpyridine (btp) 4b, 2-phenylbenzothiazole (pbt) 5b), were obtained in high-yield from a simple two-step synthetic scheme. All of these complexes were fully characterized by NMR, ESI-MS, IR, combustion analyses, and most (1b, 2b, 4b, 5b) by X-ray crystallography. Solution 1H and 13C NMR studies of [Pd(C^N)([9]aneS2O)](PF6) complexes demonstrate complicated [9]aneS2O behavior at room temperature. Variable temperature NMR reveals dynamic bonding of the [9]aneS2O ligand consistent with the presence of both endodentate and exodentate bonding modes. This is in stark contrast to the related [9]aneS3 (1,4,7-trithiacyclononane) cogeners that demonstrate fluxional endodentate bonding only in solution. X-ray structures reveal only exodenate [9]aneS2O bonding in this series, unlike the related [9]aneS3 complexes that show endodenate bonding with an axial PdS interaction. DFT calculations performed on endo and exo [9]aneS2O bonding forms of 4b, as well as a transition state calculation for interconversion, suggest reasonable access to both bonding forms based on the energy barrier. Natural bond order calculations provide further evidence for a weak axial PdO interaction in the endo form of 4b.

7.
J Mol Model ; 23(12): 343, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29147781

ABSTRACT

We systematically investigate, at density functional theory level, the electronic properties of a set of ten carotenoid molecules with different conjugation length. Ground state geometries were fully optimized using both B3LYP and its long-range corrected version, i.e., the CAM-B3LYP functional. The time-dependent DFT approach (TD-DFT) was also performed for the calculation of the excited states of the optimized geometries and the results were compared to the experimental ones, when available. Our findings indicate a dependence of the transition vertical energies, oscillator strengths, and transition dipole moments on the extension of conjugation, as expected. We also investigate the impact of the intra-molecular vibrations on the absorption spectrum by means of the Franck-Condon (FC) and nuclear ensemble (NE) approach to spectra simulation. Our simulations suggest that the Franck-Condon approximation may not be suitable to appropriately characterize the vibronic progression of these molecules, whereas the NE approach provides a contribution that vary from negligible to meaningful depending on which molecule and energy region is under analysis.

8.
J Org Chem ; 81(7): 2958-65, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26930300

ABSTRACT

This paper describes the synthesis, structure, photophysical properties, and bioimaging application of a novel 2,1,3-benzothiadiazole (BTD)-based rationally designed fluorophore. The capability of undergoing efficient stabilizing processes from the excited state allowed the novel BTD derivative to be used as a stable probe for bioimaging applications. No notable photobleaching effect or degradation could be observed during the experimental time period. Before the synthesis, the molecular architecture of the novel BTD derivative was evaluated by means of DFT calculations to validate the chosen design. Single-crystal X-ray analysis revealed the nearly flat characteristics of the structure in a syn conformation. The fluorophore was successfully tested as a live-cell-imaging probe and efficiently stained MCF-7 breast cancer cell lineages.


Subject(s)
Fluorescent Dyes/chemistry , Nitrogen/chemistry , Thiadiazoles/chemical synthesis , Breast Neoplasms/chemistry , Crystallography, X-Ray , Humans , MCF-7 Cells , Molecular Structure , Quantum Theory , Thiadiazoles/chemistry
9.
J Phys Chem A ; 120(27): 4944-50, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-26885879

ABSTRACT

In this work we use gap-fitting procedure to tune the long-range corrected functionals and accurately investigate the electronic and optical properties of the five main molecules composing Buriti oil (extracted from Mauritia flexuosa L.) in the framework of density functional theory (DFT) and time-dependent (TD) DFT. The characteristic length (1/ω) was observed to be entirely system dependent, though we concluded that its determination is of fundamental importance to rescue geometrical, electronic, and optical properties with accuracy. We demonstrate that our approach of tuning characteristic length for each system resulted in an absorbance spectra in better experimental agreement when compared to the traditional methodology. Therefore, this study indicates that the tuning of the range-separation parameter is crucial to improve the description of the optical properties of conjugated molecules when TDDFT is used. For example, the wavelength of maximum absorption, λmax, for the phytofluene, obtained using B3LYP, is 381 nm, while using the gap-fitting procedure for the tuned-LC-BLYP the estimated λmax changed to 358 nm. The latter estimate is in better agreement with the experimental value of 350 nm.

10.
J Phys Chem A ; 120(27): 4923-7, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-26886243

ABSTRACT

We report the results of electronic structure coupled to molecular dynamics simulations on organic polymers subject to a temperature gradient at low-temperature regimes. The temperature gradient is introduced using a Langevin-type dynamics corrected for quantum effects, which are very important in these systems. Under this condition we were able to determine that in these no-impurity systems the Seebeck coefficient is in the range of 1-3 µV/K. These results are in good agreement with reported experimental results under the same low-temperature conditions.

11.
J Mol Model ; 20(8): 2405, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25116151

ABSTRACT

When heterocyclic monomers are polymerized by electrochemical or chemical methods, they form fully conjugated polymers which have a wide range of applications due to their outstanding electronic properties. Among this class of compounds, thiophene derivatives are widely used due to their chemical stability and synthesis flexibility. With the goal to investigate the torsion barrier of polymer chains, a few units of 3,4-ethylenedioxythiophene (EDOT) were chosen and submitted to molecular mechanics (MM), density functional theory (DFT) and coupled cluster CCSD(T) calculations. This study helps to understand the performance and transferability of force fields used in molecular mechanics and molecular dynamics simulations often used to describe structure-property relationships of those systems. Determination of inter-ring torsion angle was performed in a comparative study using both force field, DFT and CCSD(T) methods. A good agreement was noticed between MM and QC results and highlights the importance of the description of the interactions involving the oxygen atoms present in the structure of EDOT. These observations are related to the α,α-coupling that occurs between the monomer units and yields a linear polymer. DFT HOMO and LUMO orbitals were also presented. Finally, UV-vis spectra of EDOT units were obtained using several levels of theory by means of time-dependent DFT calculations (TD-DFT).


Subject(s)
Molecular Dynamics Simulation , Quantum Theory , Thiophenes/chemistry , Torsion, Mechanical , Dimerization , Molecular Conformation , Rotation , Spectrophotometry, Ultraviolet
12.
Chem Commun (Camb) ; 49(54): 6069-71, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23722445

ABSTRACT

We report a high-resolution gas-phase UPS spectrum of zinc phthalocyanine (ZnPc) together with a detailed analysis of the vibronic structure of the first ionization band, showing that presents the lowest value of the intramolecular reorganization energy experimentally reported for a molecular organic semiconductor.

13.
Chemistry ; 16(23): 6866-76, 2010 Jun 18.
Article in English | MEDLINE | ID: mdl-20437430

ABSTRACT

We have prepared a new series of mixed thiophene-pyrrole oligomers to investigate the electronic benefits arising from the combination of these two heterocycles. The oligomers are functionalized with several hexyl and aryl groups to improve both processability and chemical robustness. An analysis of their spectroscopic (absorption and emission), photophysical, electrochemical, solid state, and vibrational properties is performed in combination with quantum-chemical calculations. This analysis provides relevant information regarding the use of these materials as organic semiconductors. The balance between the high aromatic character of pyrrole and the moderate aromaticity of thiophene allows us to address the impact of the coupling of these heterocycles in conjugated systems. The data are interpreted on the basis of the aromaticity, molecular conformations, ground and excited electronic state structures, frontier orbital topologies and energies, oxidative states, and quinoidal versus aromatic competition.

14.
Chemphyschem ; 11(5): 1062-8, 2010 Apr 06.
Article in English | MEDLINE | ID: mdl-20217887

ABSTRACT

A great deal of interest has recently focused on host-guest systems consisting of one-dimensional collinear arrays of conjugated molecules encapsulated in the channels of organic or inorganic matrices. Such architectures allow for controlled charge and energy migration processes between the interacting guest molecules and are thus attractive in the field of organic electronics. In this context, we characterize here at a quantum-chemical level the molecular parameters governing charge transport in the hopping regime in 1D arrays built with different types of molecules. We investigate the influence of several parameters (such as the symmetry of the molecule, the presence of terminal substituents, and the molecular size) and define on that basis the molecular features required to maximize the charge carrier mobility within the channels. In particular, we demonstrate that a strong localization of the molecular orbitals in push-pull compounds is generally detrimental to the charge transport properties.

15.
J Am Chem Soc ; 132(10): 3375-87, 2010 Mar 17.
Article in English | MEDLINE | ID: mdl-20166710

ABSTRACT

Perylene tetracarboxylic diimide (PTCDI) derivatives stand out as one of the most investigated families of air-stable n-type organic semiconductors for organic thin-film transistors. Here, we use density functional theory to illustrate how it is possible to control the charge-transport parameters of PTCDIs as a function of the type, number, and positions of the substituents. Specifically, two strategies of functionalization related to core and end substitutions are investigated. While end-substituted PTCDIs present the same functional molecular backbone, their molecular packing in the crystal significantly varies; as a consequence, this series of derivatives constitutes an ideal test bed to evaluate the models that describe charge-transport in organic semiconductors. Our results indicate that large bandwidths along with small effective masses can be obtained with the insertion of appropriate substituents on the nitrogens, in particular halogenated aromatic groups.

16.
Chemphyschem ; 10(13): 2265-73, 2009 Sep 14.
Article in English | MEDLINE | ID: mdl-19637205

ABSTRACT

We have performed classical molecular dynamics simulations and quantum-chemical calculations on molecular crystals of anthracene and perfluoropentacene. Our goal is to characterize the amplitudes of the room-temperature molecular displacements and the corresponding thermal fluctuations in electronic transfer integrals, which constitute a key parameter for charge transport in organic semiconductors. Our calculations show that the thermal fluctuations lead to Gaussian-like distributions of the transfer integrals centered around the values obtained for the equilibrium crystal geometry. The calculated distributions have been plugged into Monte-Carlo simulations of hopping transport, which show that lattice vibrations impact charge transport properties to various degrees depending on the actual crystal structure.

17.
J Am Chem Soc ; 131(4): 1502-12, 2009 Feb 04.
Article in English | MEDLINE | ID: mdl-19173667

ABSTRACT

The charge-transport parameters of the perfluoropentacene and perfluorotetracene crystals are studied with a joint experimental and theoretical approach that combines gas-phase ultraviolet photoelectron spectroscopy and density functional theory. To gain a better understanding of the role of perfluorination, the results for perfluoropentacene and perfluorotetracene are compared to those for their parent oligoacenes, that is, pentacene and tetracene. Perfluorination is calculated to increase the ionization potentials and electron affinities by approximately 1 eV, which is expected to reduce significantly the injection barrier for electrons in organic electronics devices. Perfluorination also leads to significant changes in the crystalline packing, which greatly affects the electronic properties of the crystals and their charge-transport characteristics. The calculations predict large conduction and valence bandwidths and low hole and electron effective masses in the perfluoroacene crystals, with the largest mobilities expected along the pi-stacks. Perfluorination impacts as well both local and nonlocal vibrational couplings, whose strengths increase by a factor of about 2 with respect to the parent compounds.

18.
Dalton Trans ; (14): 1872-82, 2008 Apr 14.
Article in English | MEDLINE | ID: mdl-18369494

ABSTRACT

We report the synthesis and full characterization for a series of cyclometallated complexes of Pt(II) and Pd(II) incorporating the fluxional trithiacrown ligand 1,4,7-trithiacyclononane ([9]aneS3). Reaction of [M(C insertion mark N)(micro-Cl)]2 (M = Pt(II), Pd(II); C insertion mark N = 2-phenylpyridinate (ppy) or 7,8-benzoquinolinate (bzq)) with [9]aneS3 followed by metathesis with NH4PF6 yields [M(C insertion mark N)([9]aneS3)](PF6). The complexes [M(C insertion mark P)([9]aneS3)](PF6) (M = Pt(II), Pd(II); Cinsertion markP = [CH2C6H4P(o-tolyl)2-C,P]-) were synthesized from their respective [Pt(C insertion mark P)(micro-Cl)]2 or [Pd(C insertion mark P)(micro-O2CCH3)]2 (C insertion mark P) starting materials. All five new complexes have been fully characterized by multinuclear NMR, IR and UV-Vis spectroscopies in addition to elemental analysis, cyclic voltammetry, and single-crystal structural determinations. As expected, the coordinated [9]aneS3 ligand shows fluxional behavior in its NMR spectra, resulting in a single 13C NMR resonance despite the asymmetric coordination environment of the cyclometallating ligand. Electrochemical studies reveal irreversible one-electron metal-centered oxidations for all Pt(II) complexes, but unusual two-electron reversible oxidations for the Pd(II) complexes of ppy and bzq. The X-ray crystal structures of each complex indicate an axial M-S interaction formed by the endodentate conformation of the [9]aneS3 ligand. The structure of [Pd(bzq)([9]aneS3)](PF6) exhibits disorder in the [9]aneS3 conformation indicating a rare exodentate conformation as the major contributor in the solid-state structure. DFT calculations on [Pt([9]aneS3)(ppy)](PF6) and [Pd([9]aneS3)(ppy)](PF6) indicate the HOMO for both complexes is primarily dz2 in character with a significant contribution from the phenyl ring of the ppy ligand and p orbital of the axial sulfur donor. In contrast, the calculated LUMO is primarily ppy pi* in character for [Pt([9]aneS3)(ppy)](PF6), but dx2-y2 in character for [Pd([9]aneS3)(ppy)](PF6).


Subject(s)
Crown Compounds/chemistry , Organometallic Compounds/chemical synthesis , Palladium/chemistry , Platinum/chemistry , Sulfhydryl Compounds/chemistry , Crystallography, X-Ray , Electrochemistry , Ligands , Magnetic Resonance Spectroscopy/methods , Models, Chemical , Models, Molecular , Molecular Structure , Organometallic Compounds/chemistry , Spectrophotometry, Ultraviolet/methods , Stereoisomerism
20.
J Phys Chem B ; 110(38): 18904-11, 2006 Sep 28.
Article in English | MEDLINE | ID: mdl-16986882

ABSTRACT

The vibrational coupling in the ground and excited states of positively charged naphthalene, anthracene, tetracene, and pentacene molecules is studied on the basis of a joint experimental and theoretical study of ionization spectra using high-resolution gas-phase photoelectron spectroscopy and first-principles correlated quantum-mechanical calculations. Our theoretical and experimental results reveal that, while the main contribution to relaxation energy in the ground state of oligoacene systems comes from high-energy vibrations, the excited-state relaxation energies show a significant redistribution toward lower-frequency vibrations. A direct correlation is found between the nature of the vibronic interaction and the pattern of the electronic state structure.


Subject(s)
Polycyclic Aromatic Hydrocarbons/chemistry , Anthracenes/chemistry , Electrons , Naphthacenes/chemistry , Naphthalenes/chemistry , Spectrum Analysis , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...