Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Physiol Biochem ; 214: 108939, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029309

ABSTRACT

GDSL-type esterase/lipase protein (GELP) genes are crucial in the specialized lipid metabolism, in the responses to abiotic stresses, and in the regulation of plant homeostasis. R. communis is an important oilseed crop species that can sustain growth and productivity when exposed to harsh environmental conditions. Herein, we raised the question of whether the GELP gene family could be involved in the acquisition of R. communis tolerance to abiotic stresses during seed germination and seedling establishment. Thus, we used bioinformatics and transcriptomics to characterize the R. communis GELP gene family. R. communis genome possesses 96 GELP genes that were characterized by extensive bioinformatics, including phylogenetic analysis, subcellular localization, exon-intron distribution, the analysis of regulatory cis-elements, tandem duplication, and physicochemical properties. Transcriptomics indicated that numerous RcGELP genes are readily responsive to high-temperature and salt stresses and might be potential candidates for genome editing techniques to develop abiotic stress-tolerant crops.


Subject(s)
Gene Expression Regulation, Plant , Germination , Plant Proteins , Ricinus , Seedlings , Stress, Physiological , Seedlings/genetics , Seedlings/growth & development , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Germination/genetics , Ricinus/genetics , Ricinus/metabolism , Esterases/genetics , Esterases/metabolism , Phylogeny , Lipase/genetics , Lipase/metabolism , Multigene Family , Genome, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL