Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(23): 34749-34758, 2022 May.
Article in English | MEDLINE | ID: mdl-35043299

ABSTRACT

Populations of Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) have shown resistance to insecticides of the carbamate and organophosphate classes. The objective of this study was to assess the susceptibility of C. quinquefasciatus larvae to essential oils from leaves of Eugenia uniflora L., Melaleuca armillaris (Sol. ex Gaertn.) Sm., and Schinus molle L and C. quinquefasciatus larvae's biochemical responses after their exposure to these leaves. The essential oils were chemically analyzed by GC and GC/MS. First, the lethal concentration for 50% (LC50) values was estimated using different concentrations of essential oils and probit analysis. The larvae were exposed for 1 h at the LC50 estimated for each essential oil. The susceptibility of the larvae to essential oils was evaluated using the following biochemical parameters: concentrations of total protein and reduced glutathione; levels of production of hydrogen peroxide and lipid peroxidation; and the activity of the enzyme acetylcholinesterase (AChE). The main chemical constituents in E. uniflora were E-ß-ocimene, curzerene, germacrene B, and germacrone; in M. armillaris were 1,8-cineole and terpinolene; and in S. molle were sabinene, myrcene, and sylvestrene. The essential oils had LC50 values between 31.52 and 60.08 mg/L, all of which were considered effective. All of them also promoted changes in biochemical parameters when compared to the control treatment. The essential oils of S. molle and E. uniflora inhibited the activity of the AChE enzyme, and the essential oil of M. armillaris increased it. All essential oils had larvicidal activity against C. quinquefasciatus, but the essential oil of E. uniflora was the most efficient. Thus, the findings of the present study suggest that the essential oil of E. uniflora can be considered promising for the development of botanical larvicides.


Subject(s)
Anacardiaceae , Culex , Culicidae , Eugenia , Insecticides , Melaleuca , Oils, Volatile , Acetylcholinesterase , Animals , Insecticides/pharmacology , Larva , Mosquito Vectors , Oils, Volatile/pharmacology , Plant Leaves
2.
Environ Sci Pollut Res Int ; 27(5): 5030-5041, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31848958

ABSTRACT

Synthetic insecticides applied to control Spodoptera frugiperda (Lepidoptera: Noctuidae) can have negative impacts on environment and human health. Botanical essential oils can be sources of organic molecules with biocontrol potential and advantages, such as minor impacts on the selection of resistant pest insects and low toxicity to humans. The aim of this study was to investigate the biocontrol action of essential oils from Brazilian species and methyl chavicol compounds on the development and metabolism of S. frugiperda. Essential oils of Eremanthus erythropappus (Asteraceae), Ocimum selloi, Hyptis suaveolens, and Hyptis marrubioides (Lamiaceae) were distilled by the steam distillation method and analyzed by gas chromatograph techniques. The essential oils were incorporated into an artificial diet (at 1, 2, and 4 mg mL-1) and offered to S. frugiperda caterpillars. Larvae of S. frugiperda at 48 h of age were fed an artificial diet containing the major constituent of O. selloi (methyl chavicol). The major compounds of the essential oils were methyl chavicol for O. selloi, α-bisabolol for E. erythropappus, bicyclogermacrene for H. suaveolens, and ß-thujone for H. marrubioides. O. selloi caused 100% mortality in S. frugiperda larvae at a concentration of 1 mg mL-1 after 48 h. H. marrubioides essential oil caused 100% mortality in larvae at a concentration of 4 mg mL-1 after 48 h. O. selloi and H. marrubioides inhibited acetylcholinesterase (AchE) activity in 72.87% and 81.69% of larvae, respectively. O. selloi presented the highest toxicity to S. frugiperda and the lowest inhibition of AchE. Methyl chavicol was lethal to all larvae within 24 h at a concentration of 0.92 mg mL-1 of diet. Methyl chavicol showed the best insecticidal activity and potential to be used as a natural insecticide to control S. frugiperda.


Subject(s)
Anisoles/chemistry , Insecticides , Spodoptera/chemistry , Zea mays , Allylbenzene Derivatives , Animals , Anisoles/analysis , Brazil , Humans , Larva
3.
J Photochem Photobiol B ; 198: 111577, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31376573

ABSTRACT

Lippia rotundifolia Cham. is in the family Verbenaceae and is endemic to the Cerrado. This species is aromatic and characterized by the presence of glandular trichomes on its leaves that are rich in monoterpenes. The objective of this study was to evaluate the growth, photosynthetic pigment production, and chemical composition of L. rotundifolia grown in vitro under different light wavelengths and intensities. The light intensities consisted of five treatments using cool white fluorescent lamps at 20, 54, 78, 88, and 110 µmol m-2 s-1. The light quality consisted of six treatments using light-emitting diodes (LEDs) in different light wavelengths, namely, white, red, blue, and their interactions: 1R:1B, 2.5R:1B, and 1R:2.5B. After 45 days, the biometric parameters, photosynthetic pigment content, and volatile compounds were evaluated. The lower light intensities of 20 and 54 µmol m-2 s-1 generated higher growth, photosynthetic pigment content, and biomass accumulation. Myrcene and pentadecane were highest under light intensities of 88 and 110 µmol m-2 s-1, respectively. The highest limonene and ocimenone levels were obtained at 20 and 54 µmol m-2 s-1 intensity, respectively, and the highest myrcenone content was obtained at 78 µmol m-2 s-1 intensity. Regarding the light wavelengths, the combination of red and blue spectra further stimulated plantlet growth, and the 2.5R:1B combination obtained the best biometric data and total chlorophyll content. The z-ocimenone chemical compound contents were highest under the 1R:2.5B light spectrum. The monochromatic blue spectrum increased the myrcene and limonene content but decreased the myrcenone content, which was increased by red light. The highest pentadecane contents were obtained with the white spectrum and the red and blue combinations.


Subject(s)
Light , Lippia/metabolism , Photosynthesis/radiation effects , Volatile Organic Compounds/metabolism , Chlorophyll/metabolism , Gas Chromatography-Mass Spectrometry , Limonene/metabolism , Lippia/chemistry , Lippia/growth & development , Plant Leaves/chemistry , Plant Leaves/metabolism , Principal Component Analysis , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL