Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0302480, 2024.
Article in English | MEDLINE | ID: mdl-38805474

ABSTRACT

Type 2 diabetes mellitus is a disease in which insulin action is impaired, and an acute bout of strength exercise can improve insulin sensitivity. Current guidelines for strength exercise prescription suggest that 8 to 30 sets could be performed, although it is not known how variations in exercise volume impact insulin sensitivity. Additionally, this means an almost 4-fold difference in time commitment, which might directly impact an individual's motivation and perceived capacity to exercise. This study will assess the acute effects of high- and low-volume strength exercise sessions on insulin sensitivity. After being thoroughly familiarized, 14 obese individuals of both sexes (>40 year old) will undergo 3 random experimental sessions, with a minimum 4-day washout period between them: a high-volume session (7 exercises, 3 sets per exercise, 21 total sets); a low-volume session (7 exercises, 1 set per exercise, 7 total sets); and a control session, where no exercise will be performed. Psychological assessments (feeling, enjoyment, and self-efficacy) will be performed after the sessions. All sessions will be held at night, and the next morning, an oral glucose tolerance test will be performed in a local laboratory, from which indexes of insulin sensitivity will be derived. We believe this study will aid in strength exercise prescription for individuals who claim not to have time to exercise or who perceive high-volume strength exercise intimidating to adhere to. This trial was prospectively registered (ReBEC #RBR-3vj5dc5 https://ensaiosclinicos.gov.br/rg/RBR-3vj5dc5).


Subject(s)
Cross-Over Studies , Insulin Resistance , Obesity , Adult , Female , Humans , Male , Middle Aged , Blood Glucose/metabolism , Blood Glucose/analysis , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/physiopathology , Glucose Tolerance Test , Obesity/therapy , Obesity/physiopathology , Randomized Controlled Trials as Topic , Resistance Training
2.
J Biophotonics ; 16(10): e202300083, 2023 10.
Article in English | MEDLINE | ID: mdl-37171054

ABSTRACT

Photobiomodulation therapy (PBMt) combined or not with oral hypoglycemic medication has not been investigated in type 2 diabetes (T2DM) patients. All 10 T2DM patients were assessed randomly at 6 different occasions (3 with and 3 without regular oral hypoglycemic medication). Capillary glycemia was assessed after overnight fast (pre-prandial), 1 h postprandially (standardized meal, 338 kcal), and 30 min, 3 h, 6 h, 12 h post-PBMt (830 nm; 25 arrays of LEDs, 80 mW/array). Three doses (0 J-sham, 100 J, 240 J per site) were applied bilaterally on quadriceps femoris muscles, hamstrings, triceps surae, ventral upper arm and forearm; and randomly combined or not with oral hypoglicemic medication, totaling six different therapies applied for all 10 TDM2 patients (PBMt sham, PBMt 100 J, PBMt 240 J, PBMt sham + medication, PBMt 100 J + medication, PBMt 240 J + medication). Cardiac autonomic control was assessed by heart rate variability (HRV) indices. Without medication, there was reduction in glycemia after all PBMt doses, with 100 J as the best dose that persisted until 12 h and presented lower area under the curve (AUC). With medication, glycemia decreased similarly among doses. No differences between 100 J and sham + medication, but AUC was significantly lower after 100 J, suggesting better glycemic control. Low frequency component of HRV increased after sham + medication and 100 J, suggesting higher sympathetic activation. PBMt showed time- and dose-response effect to reduce glycemia in T2DM patients. Effects on HRV were consistent with glycemic control.


Subject(s)
Diabetes Mellitus, Type 2 , Low-Level Light Therapy , Humans , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/radiotherapy , Glycemic Control , Muscle, Skeletal
3.
Eur J Appl Physiol ; 122(6): 1485-1495, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35394146

ABSTRACT

PURPOSE: To investigate the effect of repetition tempo on cardiovascular and metabolic stress when time under tension (TUT) and effort are matched during sessions of lower body resistance training (RT). METHODS: In a repeated-measures, cross-over design, 11 recreationally trained females (n = 5) and males (n = 6) performed 5 sets of belt squats under the following conditions: slow-repetition tempo (SLOW; 10 reps with 4-s eccentric and 2-s concentric) and traditional-repetition tempo (TRAD; 20 reps with 2-s eccentric and 1-s concentric). TUT (60 s) was matched between conditions and external load was adjusted so that lifters were close to concentric muscular failure at the end of each set. External load, total volume load (TVL), impulse (IMP), blood lactate, ratings of perceived exertion (RPE), HR, and muscle oxygenation were measured. RESULTS: Data indicated that TVL (p < 0.001), blood lactate (p = 0.017), RPE (p = 0.015), and HR (p < 0.001) were significantly greater during TRAD while external load (p = 0.030) and IMP (p = 0.002) were significantly greater during SLOW. Whether it was expressed as minimal values or change scores, muscle oxygenation was not different between protocols. CONCLUSION: When TUT is matched, TVL, cardiovascular stress, metabolic stress, and perceived exertion are greater when faster repetition tempos are used. In contrast, IMP and external load are greater when slower repetition tempos are used.


Subject(s)
Muscle, Skeletal , Resistance Training , Female , Humans , Male , Cross-Over Studies , Lactates , Muscle, Skeletal/physiology , Resistance Training/methods , Stress, Physiological
4.
Front Physiol ; 13: 824154, 2022.
Article in English | MEDLINE | ID: mdl-35360255

ABSTRACT

Objective: The purpose of this study was to compare the acute physiological, perceptual, and enjoyment responses between bodyweight high-intensity interval exercise (BW-HIIE) and treadmill running high-intensity interval exercise HIIE (RUN-HIIE). Methods: Twelve adults [age: 29.5 ± 5.3 years; weight: 70.9 ± 15.0 kg; height: 167.9 ± 8.9 cm; peak oxygen consumption (VO2 peak): 48.7 ± 6.5 ml min-1·kg-1] performed both RUN-HIIE and BW-HIIE. RUN-HIIE consisted of two sets of 5, 60-s (s) run intervals at 100% of the speed achieved during VO2 peak testing followed by 60s of walking at 4.02 km/h. BW-HIIE consisted of two sets of 5, 60s 'all-out' effort calisthenic exercises followed by 60s of marching in place at 100 steps per minute. Oxygen consumption (VO2), blood lactate (Blac), heart rate (HR), and rating of perceived exertion (RPE) were measured during exercise. Physical activity enjoyment (PACES) was assessed post-exercise. Creatine Kinase (CK) was measured before exercise and 48-h post-exercise. Muscle soreness was assessed before exercise, post-exercise, and 48-h post-exercise. Results: Oxygen consumption relative to VO2 peak was higher (p < 0.001) during RUN-HIIE (88 ± 3%) compared to BW-HIIE (77 ± 4%). HR relative to HRpeak was higher (p = 0.002) for RUN-HIIE (93 ± 1%) compared to BW-HIIE (88 ± 2%). Blac was higher (p < 0.001) after BW-HIIE (11.2 ± 3.2 mmol/l) compared to RUN-HIIE (6.9 ± 2.0 mmol/l). Average RPE achieved was higher (p = 0.003) during BW-HIIE (16 ± 2) than RUN-HIIE (14 ± 2). PACES was similar for RUN-HIIE and BW-HIIE (p > 0.05). No differences (p > 0.05) in CK were observed between RUN-HIIE and BW-HIIE. Conclusion: Our results indicate 'all-out' calisthenic exercise can elicit vigorous cardiorespiratory, Blac, and RPE responses. Implementing this style of exercise into training requires minimal space, no equipment, and may elicit cardiometabolic adaptations seen with traditional forms of high-intensity exercise.

5.
J Vis Exp ; (180)2022 02 22.
Article in English | MEDLINE | ID: mdl-35285830

ABSTRACT

High-Intensity Interval Training (HIIT) has emerged as an interesting time-efficient approach to increase exercise adherence and improve health. However, few studies have tested the efficiency of HIIT protocols in a "real world" setting, e.g., HIIT protocols designed for outdoor spaces without specialized equipment. This study presents a "real world" training protocol, named "beep training", and compares the efficiency of a HIIT regiment versus a traditional long-duration Moderate-Intensity Continuous Training (MICT) regiment using this beep training protocol on VO2 max of overweight untrained men. Twenty-two subjects performed outdoor running with MICT (n = 11) or HIIT (n = 11). Cardiorespiratory fitness was assessed before and after training protocols using a metabolic analyzer. Both training protocols were performed 3 days a week for 8 weeks using the Beep Test results. The MICT group performed the exercise program at 60%-75% of the maximum speed of the 20 m shuttle test (Vmax) and with a progression of the distance of 3,500-5,000 m. The HIIT group performed the interval exercise with 7-10 bouts of 200 m at 85%-100% of the maximum speed of the 20 m shuttle test (Vmax), interspersed with 1 min of passive recovery. Although the HIIT group presented a significantly lower training volume than the MICT group (p < 0.05) after 8 weeks of beep training, HIIT was superior to MICT in improving VO2 max (MICT: ~4.1%; HIIT: ~7.3%; p < 0.05). The "real world" HIIT regiment based on beep training protocol is a time-efficient, low-cost, and easy-to-implement protocol for overweight untrained men.


Subject(s)
Cardiorespiratory Fitness , High-Intensity Interval Training , Running , Exercise , High-Intensity Interval Training/methods , Humans , Male , Overweight
6.
Eur J Appl Physiol ; 122(4): 1097-1107, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35190865

ABSTRACT

PURPOSE: Our aim was to determine the effect of repeated sprint exercise in hypoxia on HIF-1 and HIF-1-regulated genes involved in glycolysis, mitochondrial turnover and oxygen transport. We also determined whether genes upregulated by exercise in hypoxia were dependent on the activation of HIF-1 in an in vitro model of exercise in hypoxia. METHODS: Eight endurance athletes performed bouts of repeated sprint exercise in control and hypoxic conditions. Skeletal muscle was sampled pre, post and 3 h post-exercise. HIF-1α protein and HIF1A, PDK1, GLUT4, VEGFA, BNIP3, PINK1 and PGC1A mRNA were measured. C2C12 myotubes were exposed to hypoxia and muscle contraction following treatment with a HIF-1α inhibitor to determine whether hypoxia-sensitive gene expression was dependent on HIF-1α. RESULTS: Sprint exercise in hypoxia increased HIF-1α protein expression immediately post-exercise [fold change (FC) = 3.5 ± 2.0]. Gene expression of PDK1 (FC = 2.1 ± 1.2), BNIP3 (FC = 2.4 ± 1.4) and VEGFA (FC = 2.7 ± 1.7) increased 3 h post-exercise in hypoxia but not control. PGC1A mRNA increased 3 h post-exercise in control (FC = 5.16) and hypoxia (FC = 5.7 ± 4.1) but there was no difference between the trials. Results from the in vitro experiment showed that hypoxia plus contraction also increased PDK1, BNIP3, and VEGFA gene expression. These responses were inhibited when HIF-1 protein activity was suppressed. CONCLUSION: Repeated sprint exercise in hypoxia upregulates some genes involved in glycolytic metabolism, mitochondrial turnover, and oxygen transport. HIF-1α is necessary for the expression of these genes in skeletal muscle cells.


Subject(s)
Exercise , Muscle, Skeletal , Gene Expression , Humans , Hypoxia/genetics , Hypoxia/metabolism , Muscle Contraction , Muscle, Skeletal/physiology
7.
Int J Sports Med ; 43(10): 829-839, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35088396

ABSTRACT

Generally, skeletal muscle adaptations to exercise are perceived through a dichotomous lens where the metabolic stress imposed by aerobic training leads to increased mitochondrial adaptations while the mechanical tension from resistance training leads to myofibrillar adaptations. However, there is emerging evidence for cross over between modalities where aerobic training stimulates traditional adaptations to resistance training (e.g., hypertrophy) and resistance training stimulates traditional adaptations to aerobic training (e.g., mitochondrial biogenesis). The latter is the focus of the current review in which we propose high-volume resistance training (i.e., high time under tension) leads to aerobic adaptations such as angiogenesis, mitochondrial biogenesis, and increased oxidative capacity. As time under tension increases, skeletal muscle energy turnover, metabolic stress, and ischemia also increase, which act as signals to activate the peroxisome proliferator-activated receptor gamma coactivator 1-alpha, which is the master regulator of mitochondrial biogenesis. For practical application, the acute stress and chronic adaptations to three specific forms of high-time under tension are also discussed: Slow-tempo, low-intensity resistance training, and drop-set resistance training. These modalities of high-time under tension lead to hallmark adaptations to resistance training such as muscle endurance, hypertrophy, and strength, but little is known about their effect on traditional aerobic training adaptations.


Subject(s)
Resistance Training , Adaptation, Physiological , Exercise/physiology , Humans , Hypertrophy/metabolism , Muscle, Skeletal/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
8.
Eur J Appl Physiol ; 121(1): 159-172, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33000332

ABSTRACT

PURPOSE: This study investigated the cardiometabolic health of overweight/obese untrained individuals in response to 8 weeks of HIIT and MICT using a field approach, and to 4 weeks of training cessation (TC). METHODS: Twenty-two subjects performed 8 weeks of moderate intensity continuous training (MICT-n = 11) or high-intensity interval training (HIIT-n = 11) (outdoor running), followed by 4 weeks of TC. Cardiorespiratory fitness, body composition, arterial blood pressure, glucose metabolism and blood lipids were measured pre-training (PRE), post-training (POST) and TC. RESULTS: HIIT improved eight indicators of cardiometabolic health ([Formula: see text], BMI, body fat, visceral fat, systolic blood pressure, total cholesterol, fasting glucose and triglycerides-p < 0.05) while MICT only three ([Formula: see text], BMI, and visceral fat-p < 0.05). After 4 weeks of TC, four positive adaptations from HIIT were negatively affected ( [Formula: see text], visceral fat, systolic blood pressure and total cholesterol-p < 0.05) and three in the MICT group ([Formula: see text], BMI and visceral fat, p < 0.05). CONCLUSION: Eight weeks of HIIT performed in a real-world setting promoted a greater number of positive adaptations in cardiometabolic health of individuals with overweight/obese compared to MICT. Most of the positive effects of the HIIT protocol were also found to be longer lasting and maintained after the suspension of high-intensity interval running for 4 weeks. Conversely, all positive effects of MICT protocols were reversed after TC.


Subject(s)
Cardiorespiratory Fitness , Endurance Training/methods , High-Intensity Interval Training/methods , Obesity/therapy , Adult , Blood Glucose/metabolism , Blood Pressure , Body Composition , Endurance Training/adverse effects , Female , Heart Rate , High-Intensity Interval Training/adverse effects , Humans , Lipids/blood , Male , Middle Aged , Oxygen Consumption
9.
Front Physiol ; 9: 1451, 2018.
Article in English | MEDLINE | ID: mdl-30429793

ABSTRACT

Background: The excess body fat characteristic of obesity is related to various metabolic alterations, which includes insulin resistance (IR). Among the non-pharmacological measures used to improve insulin sensitivity are aerobic physical training, such as high-intensity interval training (HIIT). This study investigated the effects of 8 weeks of HIIT on blood and skeletal muscle markers related to IR and oxidative metabolism in physically inactive individuals with obesity and compared the changes between insulin resistant and non-insulin resistant phenotypes. Methods: Initially to investigate the effect of obesity and IR in the analyzed parameters, insulin-sensitive eutrophic volunteers (CON; n = 9) and obese non-insulin (OB; n = 9) and insulin-resistant (OBR; n = 8) were enrolled. Volunteers with obesity completed 8 weeks of HIIT in a cycle ergometer. Venous blood and vastus lateralis muscle samples were obtained before and after the HIIT. Body composition and peak oxygen consumption (VO2peak) were estimated before and after HIIT. Results: HIIT reduced IR assessed by the homeostatic model assessment of insulin resistance (HOMA-IR) in OBR (4.4 ± 1.4 versus 4.1 ± 2.2 µU L-2), but not in OB (HOMA-IR 1.8 ± 0.5 versus 2.3 ± 1.0 µU L-2) volunteers. HIIT increased VO2peak with no change in body fat in both groups. In skeletal muscle, HIIT increased the phosphorylation of IRS (Tyr612), Akt (Ser473), and increased protein content of ß-HAD and COX-IV in both groups. There was a reduction in ERK1/2 phosphorylation in OBR after HIIT. Conclusion: Eight weeks of HIIT increased the content of proteins related to oxidative metabolism in skeletal muscle of individuals with obesity, independent of changes total body fat.

10.
Lasers Med Sci ; 33(3): 559-571, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29247431

ABSTRACT

Obesity represents a continuously growing global epidemic and is associated with the development of type 2 diabetes mellitus. The etiology of type 2 diabetes is related to the resistance of insulin-sensitive tissues to its action leading to impaired blood glucose regulation. Photobiomodulation (PBM) therapy might be a non-pharmacological, non-invasive strategy to improve insulin resistance. It has been reported that PBM therapy in combination with physical exercise reduces insulin resistance. Therefore, the aim of this study was to investigate the effects of PBM therapy on insulin resistance in obese mice. Male Swiss albino mice received low-fat control diet (n = 16, LFC) or high-fat diet (n = 18, HFD) for 12 weeks. From 9th to 12th week, the mice received PBM therapy (LASER) or Sham (light off) treatment and were allocated into four groups: LFC Sham (n = 8), LFC PBM (n = 8), HFD Sham (n = 9), and HFD PBM (n = 9). The PBM therapy was applied in five locations: to the left and right quadriceps muscle, upper limbs and center of the abdomen, during 40 s at each point, once a day, 5 days a week, for 4 weeks (780 nm, 250 mW/cm2, 10 J/cm2, 0.4 J per site; 2 J total dose per day). Insulin signaling pathway was evaluated in the epididymal adipose tissue. PBM therapy improved glucose tolerance and phosphorylation of Akt (Ser473) and reversed the HFD-induced reduction of GLUT4 content and phosphorylation of AS160 (Ser588). Also, PBM therapy reversed the increased area of epididymal and mesenteric adipocytes. The results showed that chronic PBM therapy improved parameters related to obesity and insulin resistance in HFD-induced obesity in mice.


Subject(s)
Adipose Tissue/metabolism , Diet, High-Fat , Glucose/metabolism , Infrared Rays , Insulin/metabolism , Intracellular Space/metabolism , Low-Level Light Therapy , Signal Transduction , Adipocytes/pathology , Adipose Tissue/radiation effects , Adiposity/radiation effects , Animals , Body Weight/radiation effects , Epididymis/pathology , Epididymis/radiation effects , Hypertrophy , Insulin/blood , Lipids/blood , Male , Mice , Sample Size , Signal Transduction/drug effects
11.
Cell Stress Chaperones ; 21(5): 793-804, 2016 09.
Article in English | MEDLINE | ID: mdl-27278803

ABSTRACT

This study aims to evaluate the effect of regular post-exercise cold water immersion (CWI) on intramuscular markers of cellular stress response and signaling molecules related to mitochondria biogenesis and exercise performance after 4 weeks of high intensity interval training (HIIT). Seventeen healthy subjects were allocated into two groups: control (CON, n = 9) or CWI (n = 8). Each HIIT session consisted of 8-12 cycling exercise stimuli (90-110 % of peak power) for 60 s followed by 75 s of active recovery three times per week, for 4 weeks (12 HIIT sessions). After each HIIT session, the CWI had their lower limbs immersed in cold water (10 °C) for 15 min and the CON recovered at room temperature. Exercise performance was evaluated before and after HIIT by a 15-km cycling time trial. Vastus lateralis biopsies were obtained pre and 72 h post training. Samples were analyzed for heat shock protein 72 kDa (Hsp72), adenosine monophosphate-activated protein kinase (AMPK), and phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) assessed by western blot. In addition, the mRNA expression of heat shock factor-1 (HSF-1), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), nuclear respiratory factor 1 and 2 (NRF1 and 2), mitochondrial transcription factor A (Tfam), calcium calmodulin-dependent protein kinase 2 (CaMK2) and enzymes citrate synthase (CS), carnitine palmitoyltransferase I (CPT1), and pyruvate dehydrogenase kinase (PDK4) were assessed by real-time PCR. Time to complete the 15-km cycling time trial was reduced with training (p < 0.001), but was not different between groups (p = 0.33). The Hsp72 (p = 0.01), p38 MAPK, and AMPK (p = 0.04) contents increased with training, but were not different between groups (p > 0.05). No differences were observed with training or condition for mRNA expression of PGC-1α (p = 0.31), CPT1 (p = 0.14), CS (p = 0.44), and NRF-2 (p = 0.82). However, HFS-1 (p = 0.007), PDK4 (p = 0.03), and Tfam (p = 0.03) mRNA were higher in CWI. NRF-1 decrease in both groups after training (p = 0.006). CaMK2 decreased with HIIT (p = 0.003) but it was not affected by CWI (p = 0.99). Cold water immersion does not alter HIIT-induced Hsp72, AMPK, p38 MAPK, and exercise performance but was able to increase some markers of cellular stress response and signaling molecules related to mitochondria biogenesis.


Subject(s)
HSP72 Heat-Shock Proteins/metabolism , Muscle, Skeletal/metabolism , Adaptation, Physiological , Adult , Biomarkers/metabolism , Cold Temperature , High-Intensity Interval Training , Humans , Male , Mitochondria, Muscle/metabolism , Mitochondrial Proteins/metabolism , Physical Conditioning, Human , Young Adult
12.
PLoS One ; 9(12): e113730, 2014.
Article in English | MEDLINE | ID: mdl-25437181

ABSTRACT

PURPOSE: We evaluated the effect of different water immersion (WI) temperatures on post-exercise cardiac parasympathetic reactivation. METHODS: Eight young, physically active men participated in four experimental conditions composed of resting (REST), exercise session (resistance and endurance exercises), post-exercise recovery strategies, including 15 min of WI at 15°C (CWI), 28°C (TWI), 38°C (HWI) or control (CTRL, seated at room temperature), followed by passive resting. The following indices were assessed before and during WI, 30 min post-WI and 4 hours post-exercise: mean R-R (mR-R), the natural logarithm (ln) of the square root of the mean of the sum of the squares of differences between adjacent normal R-R (ln rMSSD) and the ln of instantaneous beat-to-beat variability (ln SD1). RESULTS: The results showed that during WI mRR was reduced for CTRL, TWI and HWI versus REST, and ln rMSSD and ln SD1 were reduced for TWI and HWI versus REST. During post-WI, mRR, ln rMSSD and ln SD1 were reduced for HWI versus REST, and mRR values for CWI were higher versus CTRL. Four hours post exercise, mRR was reduced for HWI versus REST, although no difference was observed among conditions. CONCLUSIONS: We conclude that CWI accelerates, while HWI blunts post-exercise parasympathetic reactivation, but these recovery strategies are short-lasting and not evident 4 hours after the exercise session.


Subject(s)
Exercise Test/methods , Exercise , Heart Rate/physiology , Immersion/adverse effects , Humans , Male , Parasympathetic Nervous System/physiology , Recovery of Function , Temperature , Water , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...