Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Nutr Res ; 125: 1-15, 2024 May.
Article in English | MEDLINE | ID: mdl-38428258

ABSTRACT

Açaí seed extract (ASE) is obtained from Euterpe oleracea Mart. (açaí) plant (Amazon region) has high nutritional and functional value. ASE is rich in polyphenolic compounds, mainly proanthocyanidins. Proanthocyanidins can modulate the immune system and oxidative stress by inhibiting the toll-like receptor-4 (TLR-4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-κB (NF-κB) pathway. A great deal of evidence suggests that inflammatory cytokines and oxidative stress contribute to the pathogenesis of intestinal mucositis, and these events can lead to intestinal dysmotility. We hypothesized that ASE acts as an anti-inflammatory and antioxidant compound in intestinal mucositis induced by 5-fluorouracil (5-FU) through modulation of the TLR-4/MyD88/phosphatidylinositol-3-kinase α/mechanistic target of rapamycin/NF-κBp65 pathway. The animals were divided into linear 5-FU (450 mg/kg) and 5-FU + ASE (10, 30, and 100 mg/kg) groups. The weight loss of the animals was evaluated daily. Samples from duodenum, jejunum, and ileum were obtained for histopathological, biochemical, and functional analyses. ASE reduced weight loss, inflammatory parameters (interleukin-1ß; tumor necrosis factor-α; myeloperoxidase activity) and the gene expression of mediators involved in the TLR-2/MyD88/NF-κB pathway. ASE prevented histopathological changes with beneficial effects on gastrointestinal transit delay, gastric emptying, and intestinal absorption/permeability. In conclusion, ASE protects the integrity of the intestinal epithelial barrier by inhibiting the TLR/MyD88/PI3K/mechanistic target of rapamycin/NF-κBp65 pathway.


Subject(s)
Euterpe , Fluorouracil , Mucositis , Myeloid Differentiation Factor 88 , Plant Extracts , Polyphenols , Seeds , Signal Transduction , TOR Serine-Threonine Kinases , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/prevention & control , Mucositis/metabolism , Myeloid Differentiation Factor 88/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Plant Extracts/pharmacology , Seeds/chemistry , Polyphenols/pharmacology , Male , Euterpe/chemistry , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Transcription Factor RelA/metabolism , Antioxidants/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Oxidative Stress/drug effects , Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL