Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Cell Res ; 1868(8): 119058, 2021 07.
Article in English | MEDLINE | ID: mdl-33989700

ABSTRACT

All cells contain ribonucleoprotein (RNP) granules - large membraneless structures composed of RNA and proteins. Recent breakthroughs in RNP granule research have brought a new appreciation of their crucial role in organising virtually all cellular processes. Cells widely exploit the flexible, dynamic nature of RNP granules to adapt to a variety of functional states and the ever-changing environment. Constant exchange of molecules between the different RNP granules connects them into a network. This network controls basal cellular activities and is remodelled to enable efficient stress response. Alterations in RNP granule structure and regulation have been found to lead to fatal human diseases. The interconnectedness of RNP granules suggests that the RNP granule network as a whole becomes affected in disease states such as a representative neurodegenerative disease amyotrophic lateral sclerosis (ALS). In this review, we summarize available evidence on the communication between different RNP granules and on the RNP granule network disruption as a primary ALS pathomechanism.


Subject(s)
Cytoplasmic Granules/metabolism , Neurodegenerative Diseases/metabolism , Ribonucleoproteins/metabolism , Humans
2.
Cardiovasc Res ; 117(3): 780-791, 2021 02 22.
Article in English | MEDLINE | ID: mdl-32077934

ABSTRACT

AIMS: The cardiac ryanodine receptor (RyR2), which mediates intracellular Ca2+ release to trigger cardiomyocyte contraction, participates in development of acquired and inherited arrhythmogenic cardiac disease. This study was undertaken to characterize the network of inter- and intra-subunit interactions regulating the activity of the RyR2 homotetramer. METHODS AND RESULTS: We use mutational investigations combined with biochemical assays to identify the peptide sequence bridging the ß8 with ß9 strand as the primary determinant mediating RyR2 N-terminus self-association. The negatively charged side chains of two aspartate residues (D179 and D180) within the ß8-ß9 loop are crucial for the N-terminal inter-subunit interaction. We also show that the RyR2 N-terminus domain interacts with the C-terminal channel pore region in a Ca2+-independent manner. The ß8-ß9 loop is required for efficient RyR2 subunit oligomerization but it is dispensable for N-terminus interaction with C-terminus. Deletion of the ß8-ß9 sequence produces unstable tetrameric channels with subdued intracellular Ca2+ mobilization implicating a role for this domain in channel opening. The arrhythmia-linked R176Q mutation within the ß8-ß9 loop decreases N-terminus tetramerization but does not affect RyR2 subunit tetramerization or the N-terminus interaction with C-terminus. RyR2R176Q is a characteristic hypersensitive channel displaying enhanced intracellular Ca2+ mobilization suggesting an additional role for the ß8-ß9 domain in channel closing. CONCLUSION: These results suggest that efficient N-terminus inter-subunit communication mediated by the ß8-ß9 loop may constitute a primary regulatory mechanism for both RyR2 channel activation and suppression.


Subject(s)
Calcium Signaling , Calcium/metabolism , Ion Channel Gating , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine/metabolism , Gain of Function Mutation , HEK293 Cells , Humans , Protein Interaction Domains and Motifs , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/genetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL