Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 284
Filter
1.
Front Virol ; 42024 May 29.
Article in English | MEDLINE | ID: mdl-38883214

ABSTRACT

HIV-1 group M (HIV-1M) lineages downregulate HLA-I and CD4 expression via their Nef proteins. We hypothesized that these Nef functions may be partially responsible for the differences in prevalence of viruses from different lineages that co-circulate within an epidemic. Here, we characterized these two Nef activities in HIV-1M isolates from Cameroon, where multiple variants have been circulating since the pandemic's origin. Single HIV-1 Nef clones from 234 HIV-1-ART naïve individuals living in remote villages and two cosmopolitan cities of Cameroon, sampled between 2000 and 2013, were isolated from plasma HIV RNA and analyzed for their capacity to downregulate HLA-I and CD4 molecules. We found that, despite a large degree of within- and inter- lineage variation, the ability of Nef to downregulate HLA-I was similar across these different viruses. Moreover, Nef-mediated CD4 downregulation activity was also well conserved across the different lineages found in Cameroon. In addition, we observed a trend towards higher HLA-I downregulation activity of viruses circulating in the cosmopolitan cities versus the remote villages, whereas the CD4 downregulation activities were similar across the two settings. Furthermore, we noted a significant decline of HLA-I downregulation activity from 2000 to 2013, providing additional evidence supporting the attenuation of the global HIV-1M population over time. Finally, we identified 18 amino acids associated with differential HLA-I downregulation and 13 amino acids associated with differential CD4 downregulation within the dominant CRF02_AG lineage. Our lack of observation of HIV lineage-related differences in Nef-mediated HLA-I and CD4 downregulation function suggests that these activities do not substantively influence the prevalence of different HIV-1M lineages in Cameroon.

2.
Disabil Rehabil ; : 1-10, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904291

ABSTRACT

PURPOSE: To develop and assess the Bed Bridge Test's (BBT) feasibility, safety, and clinimetric properties and evaluate functional capacity in hospitalised patients. MATERIALS AND METHODS: This feasibility and measurement study examined four BBT versions, including the timed-limited at 30 and 60 s and repetition-limited at 5 and 10 times, in hospitalised patients in a university hospital in Brazil. Ninety-two functionally stable patients with respiratory, gastrointestinal, or post-surgical conditions participated. Participants completed the BBT versions in a random order. BBT concurrent criterion validity was evaluated using the Short Physical Performance Battery (SPPB), Sit-to-Stand (STS) test, and Functional Status Score (FSS). RESULTS: The participants were 51 ± 17 years old, 60% female, and 66% with clinical conditions. All participants completed the BBT versions without adverse events. Test-retest reliability was good-excellent (intraclass correlation coefficient >0.87) for all BBT versions, with acceptable agreement parameters and minimal detectable changes. The time-limited versions of the BBT might be affected by a ceiling effect. Floor effects were minimal for all BBT versions. BBT showed moderate associations with SPPB and STS and weak associations with FSS. CONCLUSIONS: The BBT is feasible and has promising measurement properties.


The Bed Bridge Test (BBT) offers a valuable solution for healthcare professionals by addressing the limitations of existing functional tests, providing a straightforward assessment of functional capacity for both the patient and the assessor.The BBT has demonstrated excellent feasibility and safety, as all eligible participants completed its various versions without adverse events, indicating its potential utility across diverse patient populations.The BBT exhibits good to excellent reliability, indicating its reproducibility in clinical settings.The BBT has validated its effectiveness by exhibiting robust correlations with established functional tests such as the Short Physical Performance Battery (SPPB) and Sit-to-Stand (STS) test.

3.
Nat Med ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871006

ABSTRACT

Outbreaks of mpox have historically resulted from zoonotic spillover of clade I monkeypox virus (MPXV) in Central Africa and clade II MPXV in West Africa. In 2022, subclade IIb caused a global epidemic linked to transmission through sexual contact. Here, we describe the epidemiological and genomic features of an mpox outbreak in a mining region in the Eastern Democratic Republic of the Congo (DRC), caused by clade I MPXV. Surveillance data collected between September 2023 and January 2024 identified 241 suspected cases. Genomic analysis demonstrates a distinct clade I lineage divergent from previously circulating strains in the DRC. Of the 108 PCR-confirmed mpox cases, the median age of individuals was 22 years, 51.9% were female, and 29% were sex workers, suggesting a potential role for sexual transmission. The predominance of APOBEC3-type mutations and the estimated emergence time around mid-September 2023 imply recent sustained human-to-human transmission.

4.
medRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798319

ABSTRACT

Dengue virus (DENV) is currently causing epidemics of unprecedented scope in endemic settings and expanding to new geographical areas. It is therefore critical to track this virus using genomic surveillance. However, the complex patterns of viral genomic diversity make it challenging to use the existing genotype classification system. Here we propose adding two sub-genotypic levels of virus classification, named major and minor lineages. These lineages have high thresholds for phylogenetic distance and clade size, rendering them stable between phylogenetic studies. We present an assignment tool to show that the proposed lineages are useful for regional, national and sub-national discussions of relevant DENV diversity. Moreover, the proposed lineages are robust to classification using partial genome sequences. We provide a standardized neutral descriptor of DENV diversity with which we can identify and track lineages of potential epidemiological and/or clinical importance. Information about our lineage system, including methods to assign lineages to sequence data and propose new lineages, can be found at: dengue-lineages.org.

6.
Nat Commun ; 15(1): 2360, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491050

ABSTRACT

SARS-CoV-2 clearance requires adaptive immunity but the contribution of neutralizing antibodies and T cells in different immune states is unclear. Here we ask which adaptive immune responses associate with clearance of long-term SARS-CoV-2 infection in HIV-mediated immunosuppression after suppressive antiretroviral therapy (ART) initiation. We assembled a cohort of SARS-CoV-2 infected people in South Africa (n = 994) including participants with advanced HIV disease characterized by immunosuppression due to T cell depletion. Fifty-four percent of participants with advanced HIV disease had prolonged SARS-CoV-2 infection (>1 month). In the five vaccinated participants with advanced HIV disease tested, SARS-CoV-2 clearance associates with emergence of neutralizing antibodies but not SARS-CoV-2 specific CD8 T cells, while CD4 T cell responses were not determined due to low cell numbers. Further, complete HIV suppression is not required for clearance, although it is necessary for an effective vaccine response. Persistent SARS-CoV-2 infection led to SARS-CoV-2 evolution, including virus with extensive neutralization escape in a Delta variant infected participant. The results provide evidence that neutralizing antibodies are required for SARS-CoV-2 clearance in HIV-mediated immunosuppression recovery, and that suppressive ART is necessary to curtail evolution of co-infecting pathogens to reduce individual health consequences as well as public health risk linked with generation of escape mutants.


Subject(s)
COVID-19 , HIV Infections , Humans , SARS-CoV-2 , HIV Infections/drug therapy , Antibodies, Neutralizing , Antibodies, Viral
8.
Virus Evol ; 10(1): vead075, 2024.
Article in English | MEDLINE | ID: mdl-38361824

ABSTRACT

One mechanism of variant formation may be evolution during long-term infection in immunosuppressed people. To understand the viral phenotypes evolved during such infection, we tested SARS-CoV-2 viruses evolved from an ancestral B.1 lineage infection lasting over 190 days post-diagnosis in an advanced HIV disease immunosuppressed individual. Sequence and phylogenetic analysis showed two evolving sub-lineages, with the second sub-lineage replacing the first sub-lineage in a seeming evolutionary sweep. Each sub-lineage independently evolved escape from neutralizing antibodies. The most evolved virus for the first sub-lineage (isolated day 34) and the second sub-lineage (isolated day 190) showed similar escape from ancestral SARS-CoV-2 and Delta-variant infection elicited neutralizing immunity despite having no spike mutations in common relative to the B.1 lineage. The day 190 isolate also evolved higher cell-cell fusion and faster viral replication and caused more cell death relative to virus isolated soon after diagnosis, though cell death was similar to day 34 first sub-lineage virus. These data show that SARS-CoV-2 strains in prolonged infection in a single individual can follow independent evolutionary trajectories which lead to neutralization escape and other changes in viral properties.

9.
Science ; 383(6678): eadn4168, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38175901

ABSTRACT

Africa bears a disproportionate burden of infectious diseases, accounting for a substantial percentage of global cases. Malaria, HIV/AIDS, tuberculosis, cholera, Ebola, Lassa fever, and other tropical diseases, such as dengue and chikungunya, have had a profound impact on morbidity and mortality. Various factors contribute to the higher prevalence and incidence of infectious diseases in Africa, including socioeconomic challenges, limited access to health care, inadequate sanitation and hygiene infrastructure, climate-related factors, and endemicity of certain diseases in specific regions. A skilled workforce is crucial to addressing these challenges. Unfortunately, many countries in Africa often lack the required resources, and aspiring scientists frequently seek educational and career opportunities abroad, leading to a substantial loss of talent and expertise from the continent. This talent migration, referred to as "brain drain," exacerbates the existing training gaps and hampers the sustainability of research within Africa.


Subject(s)
Communicable Diseases , Genomics , Global Burden of Disease , Humans , Africa/epidemiology , Workforce , Communicable Diseases/economics , Communicable Diseases/epidemiology , Communicable Diseases/mortality , Prevalence , Incidence , Brain Drain , Genomics/economics , Genomics/trends
10.
medRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38293032

ABSTRACT

Chronic hepatitis B virus (HBV) infection remains a significant public health concern, particularly in Africa, where there is a substantial burden. HBV is an enveloped virus, with isolates being classified into ten phylogenetically distinct genotypes (A - J) determined based on full-genome sequence data or reverse hybridization-based diagnostic tests. In practice, limitations are noted in that diagnostic sequencing, generally using Sanger sequencing, tends to focus only on the S-gene, yielding little or no information on intra-patient HBV genetic diversity with very low-frequency variants and reverse hybridization detects only known genotype-specific mutations. To resolve these limitations, we developed an Oxford Nanopore Technology (ONT)-based HBV genotyping protocol suitable for clinical virology, yielding complete HBV genome sequences and extensive data on intra-patient HBV diversity. Specifically, the protocol involves tiling-based PCR amplification of HBV sequences, library preparation using the ONT Rapid Barcoding Kit, ONT GridION sequencing, genotyping using Genome Detective software, recombination analysis using jpHMM and RDP5 software, and drug resistance profiling using Geno2pheno software. We prove the utility of our protocol by efficiently generating and characterizing high-quality near full-length HBV genomes from 148 left-over diagnostic Hepatitis B patient samples obtained in the Western Cape province of South Africa, providing valuable insights into the genetic diversity and epidemiology of HBV in this region of the world.

11.
Int J Infect Dis ; 138: 91-96, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952911

ABSTRACT

We investigated intra-host genetic evolution using two SARS-CoV-2 isolates from a fully vaccinated (primary schedule x2 doses of AstraZeneca plus a booster of Pfizer), >70-year-old woman with a history of lymphoma and hypertension who presented a SARS-CoV-2 infection for 3 weeks prior to death due to COVID-19. Two full genome sequences were determined from samples taken 13 days apart with both belonging to Pango lineage FL.2: the first detection of this Omicron sub-variant in Botswana. FL.2 is a sub-lineage of XBB.1.9.1. The repertoire of mutations and minority variants in the Spike protein differed between the two time points. Notably, we also observed deletions within the ORF1a and Membrane proteins; both regions are associated with high T-cell epitope density. The internal milieu of immune-suppressed individuals may accelerate SARS-CoV-2 evolution; hence, close monitoring is warranted.


Subject(s)
COVID-19 , Female , Humans , Aged , SARS-CoV-2/genetics , Botswana , Breakthrough Infections
12.
Nat Commun ; 14(1): 8078, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057313

ABSTRACT

Omicron BA.2.86 subvariant differs from Omicron BA.2 as well as recently circulating variants by over 30 mutations in the spike protein alone. Here we report on the isolation of the live BA.2.86 subvariant from a diagnostic swab collected in South Africa which we tested for escape from neutralizing antibodies and viral replication properties in cell culture. We found that BA.2.86 does not have significantly more escape relative to Omicron XBB.1.5 from neutralizing immunity elicited by either Omicron XBB-family subvariant infection or from residual neutralizing immunity of recently collected sera from the South African population. BA.2.86 does have extensive escape relative to ancestral virus with the D614G substitution (B.1 lineage) when neutralized by sera from pre-Omicron vaccinated individuals and relative to Omicron BA.1 when neutralized by sera from Omicron BA.1 infected individuals. BA.2.86 and XBB.1.5 show similar viral infection dynamics in the VeroE6-TMPRSS2 and H1299-ACE2 cell lines. We also investigate the relationship of BA.2.86 to BA.2 sequences. The closest BA.2 sequences are BA.2 samples from Southern Africa circulating in early 2022. Similarly, many basal BA.2.86 sequences were sampled in Southern Africa. This suggests that BA.2.86 potentially evolved in this region, and that unobserved evolution led to escape from neutralizing antibodies similar in scale to recently circulating strains of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Africa, Southern , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/virology , SARS-CoV-2/genetics
14.
medRxiv ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38014099

ABSTRACT

Chikungunya (CHIKV) is a re-emerging endemic arbovirus in West Africa. Since July 2023, Senegal and Burkina Faso have been experiencing an ongoing outbreak, with over 300 confirmed cases detected so far in the regions of Kédougou and Tambacounda in Senegal, the largest recorded outbreak yet. CHIKV is typically maintained in a sylvatic cycle in Senegal but its evolution and factors contributing to re-emergence are so far unknown in West Africa, leaving a gap in understanding and responding to recurrent epidemics. We produced, in real-time, the first locally-generated and publicly available CHIKV whole genomes in West Africa, to characterize the genetic diversity of circulating strains, along with phylodynamic analysis to estimate time of emergence and population growth dynamics. A novel strain of the West African genotype, phylogenetically distinct from strains circulating in previous outbreaks, was identified. This suggests a likely new spillover from sylvatic cycles in rural Senegal and potential of seeding larger epidemics in urban settings in Senegal and elsewhere.

15.
Sci Adv ; 9(35): eadg9204, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37656782

ABSTRACT

Despite the considerable morbidity and mortality of yellow fever virus (YFV) infections in Brazil, our understanding of disease outbreaks is hampered by limited viral genomic data. Here, through a combination of phylogenetic and epidemiological models, we reconstructed the recent transmission history of YFV within different epidemic seasons in Brazil. A suitability index based on the highly domesticated Aedes aegypti was able to capture the seasonality of reported human infections. Spatial modeling revealed spatial hotspots with both past reporting and low vaccination coverage, which coincided with many of the largest urban centers in the Southeast. Phylodynamic analysis unraveled the circulation of three distinct lineages and provided proof of the directionality of a known spatial corridor that connects the endemic North with the extra-Amazonian basin. This study illustrates that genomics linked with eco-epidemiology can provide new insights into the landscape of YFV transmission, augmenting traditional approaches to infectious disease surveillance and control.


Subject(s)
Yellow Fever , Yellow fever virus , Humans , Yellow fever virus/genetics , Phylogeny , Brazil/epidemiology , Yellow Fever/epidemiology , Disease Outbreaks , Genomics
16.
Emerg Infect Dis ; 29(10): 2072-2082, 2023 10.
Article in English | MEDLINE | ID: mdl-37735743

ABSTRACT

The 2010 cholera epidemic in Haiti was thought to have ended in 2019, and the Prime Minister of Haiti declared the country cholera-free in February 2022. On September 25, 2022, cholera cases were again identified in Port-au-Prince. We compared genomic data from 42 clinical Vibrio cholerae strains from 2022 with data from 327 other strains from Haiti and 1,824 strains collected worldwide. The 2022 isolates were homogeneous and closely related to clinical and environmental strains circulating in Haiti during 2012-2019. Bayesian hypothesis testing indicated that the 2022 clinical isolates shared their most recent common ancestor with an environmental lineage circulating in Haiti in July 2018. Our findings strongly suggest that toxigenic V. cholerae O1 can persist for years in aquatic environmental reservoirs and ignite new outbreaks. These results highlight the urgent need for improved public health infrastructure and possible periodic vaccination campaigns to maintain population immunity against V. cholerae.


Subject(s)
Cholera , Vibrio cholerae , Humans , Vibrio cholerae/genetics , Haiti/epidemiology , Bayes Theorem , Cholera/epidemiology , Disease Outbreaks
17.
Influenza Other Respir Viruses ; 17(9): e13198, 2023 09.
Article in English | MEDLINE | ID: mdl-37744993

ABSTRACT

Background: In Angola, COVID-19 cases have been reported in all provinces, resulting in >105,000 cases and >1900 deaths. However, no detailed genomic surveillance into the introduction and spread of the SARS-CoV-2 virus has been conducted in Angola. We aimed to investigate the emergence and epidemic progression during the peak of the COVID-19 pandemic in Angola. Methods: We generated 1210 whole-genome SARS-CoV-2 sequences, contributing West African data to the global context, that were phylogenetically compared against global strains. Virus movement events were inferred using ancestral state reconstruction. Results: The epidemic in Angola was marked by four distinct waves of infection, dominated by 12 virus lineages, including VOCs, VOIs, and the VUM C.16, which was unique to South-Western Africa and circulated for an extended period within the region. Virus exchanges occurred between Angola and its neighboring countries, and strong links with Brazil and Portugal reflected the historical and cultural ties shared between these countries. The first case likely originated from southern Africa. Conclusion: A lack of a robust genome surveillance network and strong dependence on out-of-country sequencing limit real-time data generation to achieve timely disease outbreak responses, which remains of the utmost importance to mitigate future disease outbreaks in Angola.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Angola/epidemiology , Molecular Epidemiology , Pandemics
18.
Science ; 381(6660): eadk4500, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37616383

ABSTRACT

While the world recovers from the COVID-19 pandemic, another crisis continues to spiral at a much faster speed than was expected. Climate change is dominating our lives and causing a high level of distress. Countries all over the world are struggling to survive the damage caused by extreme events. They are trying to control wildfires, rebuild roads and houses damaged by floods, and learn to survive in a hotter and more dangerous world. However, there is also a new threat that is being overlooked-the interaction between climate change and infectious diseases. A comprehensive meta-analysis revealed that climate change could aggravate more than 50% of known human pathogens. Unfortunately, this is happening now.


Subject(s)
Climate Change , Communicable Diseases , Endemic Diseases , Pandemics , Humans , Floods , Hot Temperature , Communicable Diseases/epidemiology
19.
Science ; 381(6655): 336-343, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37471538

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) now arise in the context of heterogeneous human connectivity and population immunity. Through a large-scale phylodynamic analysis of 115,622 Omicron BA.1 genomes, we identified >6,000 introductions of the antigenically distinct VOC into England and analyzed their local transmission and dispersal history. We find that six of the eight largest English Omicron lineages were already transmitting when Omicron was first reported in southern Africa (22 November 2021). Multiple datasets show that importation of Omicron continued despite subsequent restrictions on travel from southern Africa as a result of export from well-connected secondary locations. Initiation and dispersal of Omicron transmission lineages in England was a two-stage process that can be explained by models of the country's human geography and hierarchical travel network. Our results enable a comparison of the processes that drive the invasion of Omicron and other VOCs across multiple spatial scales.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Africa, Southern , COVID-19/transmission , COVID-19/virology , Genomics , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Phylogeny
20.
Microorganisms ; 11(7)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513009

ABSTRACT

Antimicrobial resistance is increasing despite new treatments being employed, so novel strategies are required to ensure that bacterial infections remain treatable. Bacteriophages (phages; bacteria viruses) have the potential to be used as natural antimicrobial methods to control bacterial pathogens such as Salmonella spp. A Salmonella phage, Wara, was isolated from environmental water samples at the Subaé River Basin, Salvador de Bahia, Brazil. The basin has environmental impacts in its main watercourses arising from the dumping of domestic and industrial effluents and agricultural and anthropological activities. The phage genome sequence was determined by Oxford Nanopore Technologies (ONT) MinION and Illumina HiSeq sequencing, and assembly was carried out by Racon (MinION) and Unicycler (Illumina, Illumina + MinION). The genome was annotated and compared to other Salmonella phages using various bioinformatics approaches. MinION DNA sequencing combined with Racon assembly gave the best complete genome sequence. Phylogenetic analysis revealed that Wara is a member of the Tequintavirus genus. A lack of lysogeny genes, antimicrobial resistance, and virulence genes indicated that Wara has therapeutic and biocontrol potential against Salmonella species in healthcare and agriculture.

SELECTION OF CITATIONS
SEARCH DETAIL
...