Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Front Immunol ; 15: 1380069, 2024.
Article in English | MEDLINE | ID: mdl-38835781

ABSTRACT

Bacillus Calmette-Guérin (BCG) is the first line treatment for bladder cancer and it is also proposed for melanoma immunotherapy. BCG modulates the tumor microenvironment (TME) inducing an antitumor effective response, but the immune mechanisms involved still poorly understood. The immune profile of B16-F10 murine melanoma cells was assessed by infecting these cells with BCG or stimulating them with agonists for different innate immune pathways such as TLRs, inflammasome, cGAS-STING and type I IFN. B16-F10 did not respond to any of those stimuli, except for type I IFN agonists, contrasting with bone marrow-derived macrophages (BMDMs) that showed high production of proinflammatory cytokines. Additionally, we confirmed that BCG is able to infect B16-F10, which in turn can activate macrophages and spleen cells from mice in co-culture experiments. Furthermore, we established a subcutaneous B16-F10 melanoma model for intratumoral BCG treatment and compared wild type mice to TLR2-/-, TLR3-/-, TLR4-/-, TLR7-/-, TLR3/7/9-/-, caspase 1-/-, caspase 11-/-, IL-1R-/-, cGAS-/-, STING-/-, IFNAR-/-, MyD88-/-deficient animals. These results in vivo demonstrate that MyD88 signaling is important for BCG immunotherapy to control melanoma in mice. Also, BCG fails to induce cytokine production in the co-culture experiments using B16-F10 and BMDMs or spleen cells derived from MyD88-/- compared to wild-type (WT) animals. Immunotherapy with BCG was not able to induce the recruitment of inflammatory cells in the TME from MyD88-/- mice, impairing tumor control and IFN-γ production by T cells. In conclusion, MyD88 impacts on both innate and adaptive responses to BCG leading to an efficient antitumor response against melanoma.


Subject(s)
BCG Vaccine , Immunotherapy , Melanoma, Experimental , Myeloid Differentiation Factor 88 , Signal Transduction , Animals , Mice , BCG Vaccine/immunology , BCG Vaccine/therapeutic use , Cell Line, Tumor , Cytokines/metabolism , Immunotherapy/methods , Macrophages/immunology , Macrophages/metabolism , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium bovis/immunology , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Tumor Microenvironment/immunology
2.
J Immunol ; 211(5): 791-803, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37477668

ABSTRACT

The bacillus Calmette-Guérin (BCG) can elicit enhanced innate immune responses against a wide range of infections, known as trained immunity. Brucella abortus is the causative agent of brucellosis, a debilitating disease that affects humans and animals. In this study, we demonstrate that C57BL/6 mouse bone marrow-derived macrophages under BCG training enhance inflammatory responses against B. abortus. BCG-trained macrophages showed increased MHC class II and CD40 expression on the cell surface and higher IL-6, IL-12, and IL-1ß production. The increase in IL-1ß secretion was accompanied by enhanced activation of canonical and noncanonical inflammasome platforms. We observed elevated caspase-11 expression and caspase-1 processing in BCG-trained macrophages in response to B. abortus compared with untrained cells. In addition, these BCG-trained cells showed higher NLRP3 expression after B. abortus infection. From a metabolic point of view, signaling through the Akt/mammalian target of rapamycin/S6 kinase pathway was also enhanced. In addition, BCG training resulted in higher inducible NO synthase expression and nitrite production, culminating in an improved macrophage-killing capacity against intracellular B. abortus. In vivo, we monitored a significant reduction in the bacterial burden in organs from BCG-trained C57BL/6 mice when compared with the untrained group. In addition, previous BCG immunization of RAG-1-deficient mice partially protects against Brucella infection, suggesting the important role of the innate immune compartment in this scenario. Furthermore, naive recipient mice that received BM transfer from BCG-trained donors showed greater resistance to B. abortus when compared with their untrained counterparts. These results demonstrate that BCG-induced trained immunity in mice results in better control of intracellular B. abortus in vivo and in vitro.


Subject(s)
Brucella abortus , Brucellosis , Humans , Animals , Mice , BCG Vaccine , Mice, Inbred C57BL , Macrophages , Brucellosis/metabolism , Caspases/metabolism , Mammals
3.
Sci Rep ; 11(1): 15648, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34341449

ABSTRACT

Bacillus Calmette-Guerin (BCG) is the only FDA approved first line therapy for patients with nonmuscle invasive bladder cancer. The purpose of this study is to better understand the role of innate immune pathways involved in BCG immunotherapy against murine bladder tumor. We first characterized the immunological profile induced by the MB49 mouse urothelial carcinoma cell line. MB49 cells were not able to activate an inflammatory response (TNF-α, IL-6, CXCL-10 or IFN-ß) after the stimulus with different agonists or BCG infection, unlike macrophages. Although MB49 cells are not able to induce an efficient immune response, BCG treatment could activate other cells in the tumor microenvironment (TME). We evaluated BCG intratumoral treatment in animals deficient for different innate immune molecules (STING-/-, cGAS-/-, TLR2-/-, TLR3-/-, TLR4-/-, TLR7-/-, TLR9-/-, TLR3/7/9-/-, MyD88-/-, IL-1R-/-, Caspase1/11-/-, Gasdermin-D-/- and IFNAR-/-) using the MB49 subcutaneous mouse model. Only MyD88-/- partially responded to BCG treatment compared to wild type (WT) mice, suggesting a role played by this adaptor molecule. Additionally, BCG intratumoral treatment regulates cellular infiltrate in TME with an increase of inflammatory macrophages, neutrophils and CD8+ T lymphocytes, suggesting an immune response activation that favors tumor remission in WT mice but not in MyD88-/-. The experiments using MB49 cells infected with BCG and co-cultured with macrophages also demonstrated that MyD88 is essential for an efficient immune response. Our data suggests that BCG immunotherapy depends partially on the MyD88-related innate immune pathway.


Subject(s)
Immunotherapy , Tumor Microenvironment , Urinary Bladder Neoplasms , Animals , Carcinoma, Transitional Cell , Cell Line, Tumor , Disease Models, Animal , Mice
4.
Cells ; 11(1)2021 12 28.
Article in English | MEDLINE | ID: mdl-35011636

ABSTRACT

The early detection of bacterial pathogens through immune sensors is an essential step in innate immunity. STING (Stimulator of Interferon Genes) has emerged as a key mediator of inflammation in the setting of infection by connecting pathogen cytosolic recognition with immune responses. STING detects bacteria by directly recognizing cyclic dinucleotides or indirectly by bacterial genomic DNA sensing through the cyclic GMP-AMP synthase (cGAS). Upon activation, STING triggers a plethora of powerful signaling pathways, including the production of type I interferons and proinflammatory cytokines. STING activation has also been associated with the induction of endoplasmic reticulum (ER) stress and the associated inflammatory responses. Recent reports indicate that STING-dependent pathways participate in the metabolic reprogramming of macrophages and contribute to the establishment and maintenance of a robust inflammatory profile. The induction of this inflammatory state is typically antimicrobial and related to pathogen clearance. However, depending on the infection, STING-mediated immune responses can be detrimental to the host, facilitating bacterial survival, indicating an intricate balance between immune signaling and inflammation during bacterial infections. In this paper, we review recent insights regarding the role of STING in inducing an inflammatory profile upon intracellular bacterial entry in host cells and discuss the impact of STING signaling on the outcome of infection. Unraveling the STING-mediated inflammatory responses can enable a better understanding of the pathogenesis of certain bacterial diseases and reveal the potential of new antimicrobial therapy.


Subject(s)
Bacterial Infections/metabolism , Inflammation/metabolism , Intracellular Space/microbiology , Membrane Proteins/metabolism , Signal Transduction , Animals , Endoplasmic Reticulum Stress , Humans
5.
J Immunol ; 200(2): 607-622, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29203515

ABSTRACT

Immunity against microbes depends on recognition of pathogen-associated molecular patterns by innate receptors. Signaling pathways triggered by Brucella abortus DNA involves TLR9, AIM2, and stimulator of IFN genes (STING). In this study, we observed by microarray analysis that several type I IFN-associated genes, such as IFN-ß and guanylate-binding proteins (GBPs), are downregulated in STING knockout (KO) macrophages infected with Brucella or transfected with DNA. Additionally, we determined that STING and cyclic GMP-AMP synthase (cGAS) are important to engage the type I IFN pathway, but only STING is required to induce IL-1ß secretion, caspase-1 activation, and GBP2 and GBP3 expression. Furthermore, we determined that STING but not cGAS is critical for host protection against Brucella infection in macrophages and in vivo. This study provides evidence of a cGAS-independent mechanism of STING-mediated protection against an intracellular bacterial infection. Additionally, infected IFN regulatory factor-1 and IFNAR KO macrophages had reduced GBP2 and GBP3 expression and these cells were more permissive to Brucella replication compared with wild-type control macrophages. Because GBPs are critical to target vacuolar bacteria, we determined whether GBP2 and GBPchr3 affect Brucella control in vivo. GBPchr3 but not GBP2 KO mice were more susceptible to bacterial infection, and small interfering RNA treated-macrophages showed reduction in IL-1ß secretion and caspase-1 activation. Finally, we also demonstrated that Brucella DNA colocalizes with AIM2, and AIM2 KO mice are less resistant to B. abortus infection. In conclusion, these findings suggest that the STING-dependent type I IFN pathway is critical for the GBP-mediated release of Brucella DNA into the cytosol and subsequent activation of AIM2.


Subject(s)
Brucella abortus/immunology , Brucellosis/immunology , Brucellosis/metabolism , GTP-Binding Proteins/metabolism , Inflammasomes/metabolism , Membrane Proteins/metabolism , Signal Transduction , Animals , Brucella abortus/genetics , Brucellosis/genetics , Brucellosis/microbiology , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Cytokines/metabolism , GTP-Binding Proteins/genetics , Gene Expression , Gene Expression Profiling , Granuloma/metabolism , Granuloma/microbiology , Granuloma/pathology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunity, Innate , Inflammation Mediators , Interferon Regulatory Factor-3/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Macrophages/immunology , Macrophages/metabolism , Membrane Proteins/genetics , Mice , Mice, Knockout , Models, Biological , NF-kappa B/metabolism
6.
J Immunol ; 198(8): 3023-3028, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28289159

ABSTRACT

Zika virus (ZIKV) has become a serious public health concern because of its link to brain damage in developing human fetuses. Recombinant vesicular stomatitis virus (rVSV) was shown to be a highly effective and safe vector for the delivery of foreign immunogens for vaccine purposes. In this study, we generated rVSVs (wild-type and attenuated VSV with mutated matrix protein [VSVm] versions) that express either the full length ZIKV envelope protein (ZENV) alone or include the ZENV precursor to the membrane protein upstream of the envelope protein, and our rVSV-ZIKV constructs showed efficient immunogenicity in murine models. We also demonstrated maternal protective immunity in challenged newborn mice born to female mice vaccinated with VSVm-ZENV containing the transmembrane domain. Our data indicate that rVSVm may be a suitable strategy for the design of effective vaccines against ZIKV.


Subject(s)
Genetic Vectors , Immunity, Innate/immunology , Viral Envelope Proteins/immunology , Viral Vaccines/immunology , Zika Virus Infection/immunology , Animals , Cell Line , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique , Humans , Immunoblotting , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Vesicular stomatitis Indiana virus/immunology
7.
PLoS One ; 9(6): e98913, 2014.
Article in English | MEDLINE | ID: mdl-24911280

ABSTRACT

C57BL/6 mice macrophages innately produce higher levels of NO than BALB/c cells when stimulated with LPS. Here, we investigated the molecular events that account for this intrinsic differential production of NO. We found that the lower production of NO in BALB/c is not due to a subtraction of L-arginine by arginase, and correlates with a lower iNOS accumulation, which is independent of its degradation rate. Instead, the lower accumulation of iNOS is due to the lower levels of iNOS mRNA, previously shown to be also independent of its stability, suggesting that iNOS transcription is less efficient in BALB/c than in C57BL/6 macrophages. Activation of NFκB is more efficient in BALB/c, thus not correlating with iNOS expression. Conversely, activation of STAT-1 does correlate with iNOS expression, being more prominent in C57BL/6 than in BALB/c macrophages. IFN-ß and IL-10 are more highly expressed in C57BL/6 than in BALB/c macrophages, and the opposite is true for TNF-α. Whereas IL-10 and TNF-α do not seem to participate in their differential production of NO, IFN-ß has a determinant role since 1) anti-IFN-ß neutralizing antibodies abolish STAT-1 activation reducing NO production in C57BL/6 macrophages to levels as low as in BALB/c cells and 2) exogenous rIFN-ß confers to LPS-stimulated BALB/c macrophages the ability to phosphorylate STAT-1 and to produce NO as efficiently as C57BL/6 cells. We demonstrate, for the first time, that BALB/c macrophages are innately lower NO producers than C57BL/6 cells because they are defective in the TLR-4-induced IFN-ß-mediated STAT-1 activation pathway.


Subject(s)
Gene Expression Regulation/drug effects , Interferon-beta/genetics , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Nitric Oxide/biosynthesis , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Animals , Arginase/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/genetics , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT1 Transcription Factor/metabolism , Species Specificity , Transcription, Genetic/drug effects
8.
Rev Bras Parasitol Vet ; 19(1): 32-8, 2010.
Article in Portuguese | MEDLINE | ID: mdl-20385057

ABSTRACT

The purpose of the present study was to evaluate the immunohistochemistry (IMHC) and PCR (Polymerase Chain Reaction) tests for Canine Visceral Leishmaniasis (CVL) diagnosis and compare the results with serological tests such as the indirect fluorescence antibody test (IFAT), ELISA and a parasitological test (microscopic direct examination of the parasite stained with haematoxylin and eosin--HE). For this study, samples of healthy or lesion skin tissues were obtained from 34 CVL naturally infected dogs classified in three groups: asymptomatic, oligosymptomatic and polisymptomatic. Not only lesion (56.5%) but also healthy skins (31.8%) were positives by IMHC and confirmed by PCR in 97.8% of skin samples. In asymptomatic group, 87.5% dogs were negatives by serological tests, but positives by IMHC in 50% and by PCR in 100%. In oligosymptomatic group, 100%, 85.7% and 28.6% of dogs were positives, respectively by PCR, serological and IMHC tests. In addition, 91.7% of polisymptomatic dogs were serum positive and had intact parasites in the skin. In general, PCR showed higher positivity (100%). The efficiency of each test varied with the evolution of the disease. IMHC may be used to confirm the results of the serology and PCR in inconclusive cases after HE and IMHC. The association of techniques proposed in this study may increase the positivity and contributed to the control of this canine disease.


Subject(s)
Dog Diseases/diagnosis , Leishmaniasis, Visceral/veterinary , Skin/parasitology , Animals , Dogs , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique, Indirect , Immunohistochemistry , Leishmaniasis, Visceral/diagnosis , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL