Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-38015044

ABSTRACT

As part of a larger study on Epsilonproteobacteria carried by wild birds in the city of Valdivia (southern Chile), two curved rod-shaped Gram-stain-negative strains (A82T and WB-40) were recovered from faecal samples and subjected to a taxonomic study. Results of a genus-specific PCR showed that these isolates belonged to the genus Helicobacter. Further identification by 16S rRNA and hsp60 (60 kDa heat-shock protein) gene sequence analysis revealed that they formed a separate phylogenetic clade, different from other known Helicobacter species with 'Helicobacter burdigaliensis' CNRCH 2005/566HT and Helicobacter valdiviensis WBE14T being the most closely related species. This was confirmed by core-genome phylogeny as well as digital DNA-DNA hybridization and average nucleotide identity analyses between the genomes of strains A82T and WB-40 and all other Helicobacter species. The draft genome sequences of A82T and WB-40, obtained by Illumina NextSeq 2000 sequencing, consisted of 1.6 Mb with a G+C content of 31.9-32.0 mol%. The results obtained from the phylogenetic and genomic characterization, together with their different morphological and biochemical features, revealed that these two strains represent a novel species, for which we propose the name Helicobacter ibis sp. nov. with A82T (=LMG 32718T=CCCT 22.04T) as the type strain.


Subject(s)
Fatty Acids , Helicobacter , Animals , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Fatty Acids/chemistry , Birds , Helicobacter/genetics
2.
Front Microbiol ; 12: 603791, 2021.
Article in English | MEDLINE | ID: mdl-33776952

ABSTRACT

Actinobacteria are prokaryotes with a large biotechnological interest due to their ability to produce secondary metabolites, produced by two main biosynthetic gene clusters (BGCs): polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS). Most studies on bioactive products have been carried out on actinobacteria isolated from soil, freshwater or marine habitats, while very few have been focused on halophilic actinobacteria isolated from extreme environments. In this study we have carried out a comparative genomic analysis of the actinobacterial genus Saccharomonospora, which includes species isolated from soils, lake sediments, marine or hypersaline habitats. A total of 19 genome sequences of members of Saccharomonospora were retrieved and analyzed. We compared the 16S rRNA gene-based phylogeny of this genus with evolutionary relationships inferred using a phylogenomic approach obtaining almost identical topologies between both strategies. This method allowed us to unequivocally assign strains into species and to identify some taxonomic relationships that need to be revised. Our study supports a recent speciation event occurring between Saccharomonospora halophila and Saccharomonospora iraqiensis. Concerning the identification of BGCs, a total of 18 different types of BGCs were detected in the analyzed genomes of Saccharomonospora, including PKS, NRPS and hybrid clusters which might be able to synthetize 40 different putative products. In comparison to other genera of the Actinobacteria, members of the genus Saccharomonospora showed a high degree of novelty and diversity of BGCs.

3.
Microbiol Resour Announc ; 9(15)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32273373

ABSTRACT

The draft genome sequence of Saccharomonospora piscinae KCTC 19743T, with a size of 4,897,614 bp, was assembled into 11 scaffolds containing 4,561 open reading frames and a G+C content of 71.0 mol%. Polyketide synthase and nonribosomal peptide synthetase gene clusters, which are responsible for the biosynthesis of several biomolecules, were identified and located in different regions in the genome.

4.
Microorganisms ; 7(8)2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31387286

ABSTRACT

The genus Salinivibrio belongs to the family Vibrionaceae and includes Gram-stain-negative, motile by a polar flagellum, and facultatively anaerobic curved rods. They are halophilic bacteria commonly found in hypersaline aquatic habitats and salted foods. This genus includes five species and two subspecies. A presumed novel species, strain S35T, was previously isolated from the high-altitude volcanic, alkaline, and saline lake Socompa (Argentinean Andes). In this study we carried out a complete taxonomic characterization of strain S35T, including the 16S rRNA gene sequence and core-genome analysis, the average nucleotide identity (ANIb, ANIm, and orthoANI), and in silico DNA-DNA hybridization (GGDC), as well as the phenotypic and chemotaxonomic characterization. It grew at 3%-20% (w/v) NaCl, pH 6-10, and 10-42 °C, with optimum growth at 7.0%-7.5% (w/v) NaCl, pH 8.0, and 37 °C, respectively. Strain S35T was oxidase- and catalase-positive, able to produce acid from D-glucose and other carbohydrates. Hydrolysis of DNA, methyl red test, and nitrate and nitrite reduction were positive. Its main fatty acids were C16:0, C16:1 ω7c and C16:1 ω6c, and C18:1 ω7c and/or C18:1 ω6c. ANI, GGDC, and core-genome analysis determined that strain S35T constitutes a novel species of the genus Salinivibrio, for which the name Salinivibrio socompensis sp. nov. is proposed. The type strain is S35T (= CECT 9634T = BNM 0535T).

5.
Int J Syst Evol Microbiol ; 68(5): 1599-1607, 2018 May.
Article in English | MEDLINE | ID: mdl-29580324

ABSTRACT

We carried out a comparative taxonomic study of Salinivibrio proteolyticus and Salinivibrio costicola subsp. vallismortis, as well as of five halophilic strains (IB574, IB872, PR5, PR919 and PR932), isolated from salterns in Spain and Puerto Rico that were closely related to these bacteria. Multilocus sequence analysis of concatenated gyrB, recA, rpoA and rpoD housekeeping genes showed that they constituted a single cluster separate from the other species and subspecies of Salinivibrio. Experimental and in silico DNA-DNA hybridization studies indicated that they are members of the same species, with relatedness of 100-74 % and 97.8-70.0 %, respectively. The average nucleotide identity (ANI) determined for these strains was 99.7-95.6 % for ANIb and 99.7-95.7 % for OrthoANI. However, the ANI values for S. costicolasubsp.vallismortis DSM 8285T with respect to S. costicolasubsp.costicola DSM 11403T and S. costicolasubsp.alcaliphilus DSM 16359T were 78.7 and 78.9 % (ANIb) and 79.4 and 79.4 % (OrthoANI), respectively. The phylogenomic tree based on 1072 concatenated orthologous single-copy core genes confirmed that S. proteolyticus, S. costicolasubsp.vallismortis and the five new isolates constitute a coherent single phylogroup, separated from the other species and subspecies of Salinivibrio. All these data indicate that S. costicolasubsp.vallismortis is a heterotypic synonym of S. proteolyticus and we propose an emended description of this species.


Subject(s)
Phylogeny , Salinity , Vibrionaceae/classification , Water Microbiology , Bacterial Typing Techniques , DNA, Bacterial/genetics , Genes, Bacterial , Multilocus Sequence Typing , Nucleic Acid Hybridization , Puerto Rico , Sequence Analysis, DNA , Spain
6.
Genome Announc ; 5(21)2017 May 25.
Article in English | MEDLINE | ID: mdl-28546487

ABSTRACT

The draft genome sequence of Saccharomonospora sp. strain LRS4.154, a moderately halophilic actinobacterium, has been determined. The genome has 4,860,108 bp, a G+C content of 71.0%, and 4,525 open reading frames (ORFs). The clusters of PKS and NRPS genes, responsible for the biosynthesis of a large number of biomolecules, were identified in the genome.

SELECTION OF CITATIONS
SEARCH DETAIL