Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Genes Brain Behav ; 23(3): e12895, 2024 06.
Article in English | MEDLINE | ID: mdl-38837620

ABSTRACT

Duchenne muscular dystrophy is a severe neuromuscular disorder that is caused by mutations in the DMD gene, resulting in a disruption of dystrophin production. Next to dystrophin expression in the muscle, different isoforms of the protein are also expressed in the brain and lack of these isoforms leads to cognitive and behavioral deficits in patients. It remains unclear how the loss of the shorter dystrophin isoform Dp140 affects these processes. Using a variety of behavioral tests, we found that mdx and mdx4cv mice (which lack Dp427 or Dp427 + Dp140, respectively) exhibit similar deficits in working memory, movement patterns and blood-brain barrier integrity. Neither model showed deficits in spatial learning and memory, learning flexibility, anxiety or spontaneous behavior, nor did we observe differences in aquaporin 4 and glial fibrillary acidic protein. These results indicate that in contrast to Dp427, Dp140 does not play a crucial role in processes of learning, memory and spontaneous behavior.


Subject(s)
Blood-Brain Barrier , Dystrophin , Muscular Dystrophy, Duchenne , Animals , Mice , Blood-Brain Barrier/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/physiopathology , Dystrophin/genetics , Dystrophin/metabolism , Male , Mice, Inbred mdx , Mice, Inbred C57BL , Aquaporin 4/genetics , Aquaporin 4/metabolism , Memory, Short-Term , Memory
2.
J Neuromuscul Dis ; 11(2): 299-314, 2024.
Article in English | MEDLINE | ID: mdl-38189760

ABSTRACT

Insulin-like growth factor-1 (IGF-1) has been considered as a therapeutic agent for muscle wasting conditions including Duchenne muscular dystrophy as it stimulates muscle regeneration, growth and function. Several preclinical and clinical studies have been conducted to show the therapeutic potential of IGF-1, however, delivery issues, short half-life and isoform complexity have impose challenges. Antisense oligonucleotides (AONs) are able to downregulate target proteins by interfering with their transcripts. Here, we investigated the feasibility of enhancing IGF-1 signaling by downregulation of IGF-binding proteins. We observed that out of frame exon skipping of Igfbp1 and Igfbp3 downregulated their protein expression, which increased Akt phosphorylation on the downstream IGF-1 signaling in vitro. 3'RNA sequencing analysis revealed the related transcriptome in C2C12 cells in response to IGFBP3 downregulation. The AONs did however not induce any exon skipping or protein knockdown in mdx mice after 6 weeks of systemic treatment. We conclude that IGFBP downregulation could be a good strategy to increase IGF-1 signaling but alternative tools are needed for efficient delivery and knockdown in vivo.


Subject(s)
Dystrophin , Oligonucleotides, Antisense , Mice , Animals , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Dystrophin/genetics , Mice, Inbred mdx , Insulin-Like Growth Factor I/metabolism , Down-Regulation , Oligonucleotides , Insulin-Like Growth Factor Binding Proteins/genetics , Insulin-Like Growth Factor Binding Proteins/metabolism
3.
Biomedicines ; 11(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38137463

ABSTRACT

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene that disrupt the open reading frame and thus prevent production of functional dystrophin proteins. Recent advances in DMD treatment, notably exon skipping and AAV gene therapy, have achieved some success aimed at alleviating the symptoms related to progressive muscle damage. However, they do not address the brain comorbidities associated with DMD, which remains a critical aspect of the disease. The mdx52 mouse model recapitulates one of the most frequent genetic pathogenic variants associated with brain involvement in DMD. Deletion of exon 52 impedes expression of two brain dystrophins, Dp427 and Dp140, expressed from distinct promoters. Interestingly, this mutation is eligible for exon skipping strategies aimed at excluding exon 51 or 53 from dystrophin mRNA. We previously showed that exon 51 skipping can restore partial expression of internally deleted yet functional Dp427 in the brain following intracerebroventricular (ICV) injection of antisense oligonucleotides (ASO). This was associated with a partial improvement of anxiety traits, unconditioned fear response, and Pavlovian fear learning and memory in the mdx52 mouse model. In the present study, we investigated in the same mouse model the skipping of exon 53 in order to restore expression of both Dp427 and Dp140. However, in contrast to exon 51, we found that exon 53 skipping was particularly difficult in mdx52 mice and a combination of multiple ASOs had to be used simultaneously to reach substantial levels of exon 53 skipping, regardless of their chemistry (tcDNA, PMO, or 2'MOE). Following ICV injection of a combination of ASO sequences, we measured up to 25% of exon 53 skipping in the hippocampus of treated mdx52 mice, but this did not elicit significant protein restoration. These findings indicate that skipping mouse dystrophin exon 53 is challenging. As such, it has not yet been possible to answer the pertinent question whether rescuing both Dp427 and Dp140 in the brain is imperative to more optimal treatment of neurological aspects of dystrophinopathy.

4.
Nucleic Acid Ther ; 33(6): 348-360, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38010230

ABSTRACT

Antisense oligonucleotide (AON)-mediated exon skipping is a promising therapeutic approach for Duchenne muscular dystrophy (DMD) patients to restore dystrophin expression by reframing the disrupted open reading frame of the DMD transcript. However, the treatment efficacy of the already conditionally approved AONs remains low. Aiming to optimize AON efficiency, we assessed exon 53 skipping of the DMD transcript with different chemically modified AONs, all with a phosphorothioate backbone: 2'-O-methyl (2'OMe), locked nucleic acid (LNA)-2'OMe, 2'-fluoro (FRNA), LNA-FRNA, αLNA-FRNA, and FANA-LNA-FRNA. Efficient exon 53 skipping was observed with the FRNA, LNA-FRNA, and LNA-2'OMe AONs in human control myoblast cultures. Weekly subcutaneous injections (50 mg/kg AON) for a duration of 6 weeks were well tolerated by hDMDdel52/mdx males. Treatment with the LNA-FRNA and LNA-2'OMe AONs resulted in pronounced exon 53 skip levels in skeletal muscles and heart up to 90%, but no dystrophin restoration was observed. This discrepancy was mainly ascribed to the strong binding nature of LNA modifications to RNA, thereby interfering with the amplification of the unskipped product resulting in artificial overamplification of the exon 53 skip product. Our study highlights that treatment effect on RNA and protein level should both be considered when assessing AON efficiency.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Male , Animals , Mice , Humans , Dystrophin/genetics , Oligonucleotides, Antisense/therapeutic use , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Mice, Inbred mdx , Genetic Therapy/methods , Exons/genetics , RNA
5.
J Cachexia Sarcopenia Muscle ; 14(3): 1546-1557, 2023 06.
Article in English | MEDLINE | ID: mdl-37127427

ABSTRACT

BACKGROUND: Becker muscular dystrophy (BMD) is an X-linked disorder characterized by slow, progressive muscle damage and muscle weakness. Hallmarks include fibre-size variation and replacement of skeletal muscle with fibrous and adipose tissues, after repeated cycles of regeneration. Muscle histology can detect these features, but the required biopsies are invasive, are difficult to repeat and capture only small muscle volumes. Diffusion-tensor magnetic resonance imaging (DT-MRI) is a potential non-invasive alternative that can calculate muscle fibre diameters when applied with the novel random permeable barrier model (RPBM). In this study, we assessed muscle fibre diameters using DT-MRI in BMD patients and healthy controls and compared these with histology. METHODS: We included 13 BMD patients and 9 age-matched controls, who underwent water-fat MRI and DT-MRI at multiple diffusion times, allowing RPBM parameter estimation in the lower leg muscles. Tibialis anterior muscle biopsies were taken from the contralateral leg in 6 BMD patients who underwent DT-MRI and from an additional 32 BMD patients and 15 healthy controls. Laminin and Sirius-red stainings were performed to evaluate muscle fibre morphology and fibrosis. Twelve ambulant patients from the MRI cohort underwent the North Star ambulatory assessment, and 6-min walk, rise-from-floor and 10-m run/walk functional tests. RESULTS: RPBM fibre diameter was significantly larger in BMD patients (P = 0.015): mean (SD) = 68.0 (25.3) µm versus 59.4 (19.2) µm in controls. Inter-muscle differences were also observed (P ≤ 0.002). Both inter- and intra-individual RPBM fibre diameter variability were similar between groups. Laminin staining agreed with the RPBM, showing larger median fibre diameters in patients than in controls: 72.5 (7.9) versus 63.2 (6.9) µm, P = 0.006. However, despite showing similar inter-individual variation, patients showed more intra-individual fibre diameter variability than controls-mean variance (SD) = 34.2 (7.9) versus 21.4 (6.9) µm, P < 0.001-and larger fibrosis areas: median (interquartile range) = 21.7 (5.6)% versus 14.9 (3.4)%, P < 0.001. Despite good overall agreement of RPBM and laminin fibre diameters, they were not associated in patients who underwent DT-MRI and muscle biopsy, perhaps due to lack of colocalization of DT-MRI with biopsy samples. CONCLUSIONS: DT-MRI RPBM metrics agree with histology and can quantify changes in muscle fibre size that are associated with regeneration without the need for biopsies. They therefore show promise as imaging biomarkers for muscular dystrophies.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/pathology , Laminin , Muscle, Skeletal/pathology , Muscle Fibers, Skeletal/pathology , Magnetic Resonance Imaging
6.
Nucleic Acid Ther ; 33(1): 26-34, 2023 01.
Article in English | MEDLINE | ID: mdl-36269327

ABSTRACT

Downregulation of genes involved in the secondary pathology of Duchenne muscular dystrophy, for example, inflammation, fibrosis, and adiposis, is an interesting approach to ameliorate degeneration of muscle and replacement by fibrotic and adiposis tissue. Small interfering RNAs (siRNAs) are able to downregulate target genes, however, delivery of siRNAs to skeletal muscle still remains a challenge. We investigated delivery of fully chemically modified, cholesterol-conjugated siRNAs targeting Alk4, a nontherapeutic target that is expressed highly in muscle. We observed that a single intravenous or intraperitoneal (IP) injection of 10 mg/kg resulted in significant downregulation of Alk4 mRNA expression in skeletal muscles in both wild-type and mdx mice. Treatment with multiple IP injections of 10 mg/kg led to an overall reduction of Alk4 expression, reaching significance in tibialis anterior (39.7% ± 6.2%), diaphragm (32.7% ± 5.8%), and liver (41.3% ± 29.9%) in mdx mice. Doubling of the siRNA dose did not further increase mRNA silencing in muscles of mdx mice. The chemically modified conjugated siRNAs used in this study are very promising for delivery to both nondystrophic and dystrophic muscles and could have major implications for treatment of muscular dystrophy pathology.


Subject(s)
Muscular Dystrophy, Duchenne , Mice , Animals , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Mice, Inbred mdx , Dystrophin/genetics , Down-Regulation , RNA, Small Interfering/therapeutic use , Muscle, Skeletal/pathology , RNA, Messenger/metabolism , Disease Models, Animal
7.
J Neuromuscul Dis ; 10(1): 155-158, 2023.
Article in English | MEDLINE | ID: mdl-36336938

ABSTRACT

The C57BL/10ScSn-Dmdmdx/J (mdx) mouse model has been used by researchers for decades as a model to study pathology of and develop therapies for Duchenne muscular dystrophy. However, the model is relatively mildly affected compared to the human situation. Recently, the D2.B10-Dmdmdx/J (D2.mdx) mouse model was suggested as a more severely affected and therefore better alternative. While the pathology of this model is indeed more pronounced early in life, it is not progressive, and increasing evidence suggest that it actually partially resolves with age. As such, caution is needed when using this model. However, as preclinical experts of the TREAT-NMD advisory committee for therapeutics (TACT), we frequently encounter study designs that underestimate this caveat. We here provide context for how to best use the two models for preclinical studies at the current stage of knowledge.


Subject(s)
Muscular Dystrophy, Duchenne , Animals , Mice , Humans , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/pathology , Mice, Inbred C57BL , Advisory Committees , Disease Models, Animal
8.
Dis Model Mech ; 15(7)2022 07 01.
Article in English | MEDLINE | ID: mdl-35912512

ABSTRACT

Neuromuscular disorders (NMDs) are a heterogenous group of rare inherited diseases that compromise the function of peripheral nerves and/or muscles. With limited treatment options available, there is a growing need to design effective preclinical studies that can lead to greater success in clinical trials for novel therapeutics. Here, I discuss recent advances in modelling NMDs to improve preclinical studies as well as two articles from this issue that work in parallel to enable a deeper understanding of a particularly rare NMD, known as X-linked myotubular myopathy.


Subject(s)
Myopathies, Structural, Congenital , Neuromuscular Diseases , Humans , Neuromuscular Diseases/genetics , Neuromuscular Diseases/therapy , Rare Diseases/therapy
9.
Front Endocrinol (Lausanne) ; 13: 907908, 2022.
Article in English | MEDLINE | ID: mdl-35898460

ABSTRACT

Muscle atrophy is common in patients with increased glucocorticoid exposure. Glucocorticoid effects are often sex-specific, and while different glucocorticoid responses between male and female subjects are reported, it is unclear why this is. In this study, we evaluated the effects of corticosterone and synthetic glucocorticoid treatment on muscle atrophy in male and female mice. We found that corticosterone treatment reduced grip strength in female mice only, whereas muscle mass was reduced in both sexes. Skeletal muscle transcriptional responses to corticosterone treatment were more pronounced and widespread in male mice. Synthetic glucocorticoid treatment reduced grip strength in both sexes, while female mice were more sensitive to muscle atrophy than male mice. To evaluate the role of androgens, chemically-castrated male mice were treated with synthetic glucocorticoids. We observed additively reduced muscle mass, but did not observe any interaction effects. Although sex differences in glucocorticoid responses in skeletal muscle are partly influenced by androgen signaling, further studies are warranted to fully delineate the underlying mechanisms.


Subject(s)
Corticosterone , Glucocorticoids , Androgens/pharmacology , Animals , Corticosterone/pharmacology , Female , Glucocorticoids/pharmacology , Humans , Male , Mice , Muscle, Skeletal , Muscular Atrophy , Sex Characteristics
10.
Neuromuscul Disord ; 32(5): 419-435, 2022 05.
Article in English | MEDLINE | ID: mdl-35465969

ABSTRACT

Limb girdle muscular dystrophy type 2D (LGMD2D) is characterized by progressive weakening of muscles in the hip and shoulder girdles. It is caused by a mutation in the α-sarcoglycan gene and results in absence of α-sarcoglycan in the dystrophin-glycoprotein complex. The activin type IIB receptor is involved in the activin/myostatin pathway, with myostatin being a negative regulator of muscle growth. In this study, we investigated the effects of sequestering myostatin by a soluble activin type IIB receptor (sActRIIB) on muscle growth in Sgca-null mice, modelling LGMD2D. Treatment was initiated at 3 weeks of age, prior to the disease onset, or at 9 weeks of age when already in an advanced stage of the disease. We found that early sActRIIB treatment resulted in increased muscle size. However, this led to more rapid decline of muscle function than in saline-treated Sgca-null mice. Furthermore, no histopathological improvements were seen after sActRIIB treatment. When initiated at 9 weeks of age, sActRIIB treatment resulted in increased muscle mass too, but to a lesser extent. No effect of the treatment was observed on muscle function or histopathology. These data show that sActRIIB treatment as a stand-alone therapy does not improve muscle function or histopathology in Sgca-null mice.


Subject(s)
Myostatin , Sarcoglycanopathies , Activin Receptors/metabolism , Activins/metabolism , Animals , Disease Models, Animal , Mice , Muscle, Skeletal/pathology , Myostatin/genetics , Sarcoglycanopathies/metabolism , Sarcoglycans/genetics , Sarcoglycans/metabolism
11.
Cytometry A ; 99(12): 1240-1249, 2021 12.
Article in English | MEDLINE | ID: mdl-34089298

ABSTRACT

Skeletal muscle function is inferred from the spatial arrangement of muscle fiber architecture, which corresponds to myofiber molecular and metabolic features. Myofiber features are often determined using immunofluorescence on a local sampling, typically obtained from a median region. This median region is assumed to represent the entire muscle. However, it remains largely unknown to what extent this local sampling represents the entire muscle. We present a pipeline to study the architecture of muscle fiber features over the entire muscle, including sectioning, staining, imaging to image quantification and data-driven analysis with Myofiber type were identified by the expression of myosin heavy chain (MyHC) isoforms, representing contraction properties. We reconstructed muscle architecture from consecutive cross-sections stained for laminin and MyHC isoforms. Examining the entire muscle using consecutive cross-sections is extremely laborious, we provide consideration to reduce the dataset without loosing spatial information. Data-driven analysis with over 150,000 myofibers showed spatial variations in myofiber geometric features, myofiber type, and the distribution of neuromuscular junctions over the entire muscle. We present a workflow to study histological changes over the entire muscle using high-throughput imaging, image quantification, and data-driven analysis. Our results suggest that asymmetric spatial distribution of these features over the entire muscle could impact muscle function. Therefore, instead of a single sampling from a median region, representative regions covering the entire muscle should be investigated in future studies.


Subject(s)
Muscle Fibers, Skeletal , Myosin Heavy Chains , Muscle, Skeletal , Protein Isoforms
12.
Sci Rep ; 11(1): 9779, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33963238

ABSTRACT

Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder caused by loss of dystrophin. This lack also affects cardiac structure and function, and cardiovascular complications are a major cause of death in DMD. Newly developed therapies partially restore dystrophin expression. It is unclear whether this will be sufficient to prevent or ameliorate cardiac involvement in DMD. We here establish the cardiac electrophysiological and structural phenotype in young (2-3 months) and aged (6-13 months) dystrophin-deficient mdx mice expressing 100% human dystrophin (hDMD), 0% human dystrophin (hDMDdel52-null) or low levels (~ 5%) of human dystrophin (hDMDdel52-low). Compared to hDMD, young and aged hDMDdel52-null mice displayed conduction slowing and repolarisation abnormalities, while only aged hDMDdel52-null mice displayed increased myocardial fibrosis. Moreover, ventricular cardiomyocytes from young hDMDdel52-null animals displayed decreased sodium current and action potential (AP) upstroke velocity, and prolonged AP duration at 20% and 50% of repolarisation. Hence, cardiac electrical remodelling in hDMDdel52-null mice preceded development of structural alterations. In contrast to hDMDdel52-null, hDMDdel52-low mice showed similar electrophysiological and structural characteristics as hDMD, indicating prevention of the cardiac DMD phenotype by low levels of human dystrophin. Our findings are potentially relevant for the development of therapeutic strategies aimed at restoring dystrophin expression in DMD.


Subject(s)
Cardiac Electrophysiology , Dystrophin , Muscular Dystrophy, Duchenne , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Animals , Dystrophin/genetics , Dystrophin/metabolism , Mice , Mice, Inbred mdx , Mice, Transgenic , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/physiopathology
13.
PLoS One ; 15(12): e0244215, 2020.
Article in English | MEDLINE | ID: mdl-33362201

ABSTRACT

Duchenne muscular dystrophy (DMD) is a severe, progressive neuromuscular disorder caused by reading frame disrupting mutations in the DMD gene leading to absence of functional dystrophin. Antisense oligonucleotide (AON)-mediated exon skipping is a therapeutic approach aimed at restoring the reading frame at the pre-mRNA level, allowing the production of internally truncated partly functional dystrophin proteins. AONs work in a sequence specific manner, which warrants generating humanized mouse models for preclinical tests. To address this, we previously generated the hDMDdel52/mdx mouse model using transcription activator like effector nuclease (TALEN) technology. This model contains mutated murine and human DMD genes, and therefore lacks mouse and human dystrophin resulting in a dystrophic phenotype. It allows preclinical evaluation of AONs inducing the skipping of human DMD exons 51 and 53 and resulting in restoration of dystrophin synthesis. Here, we have further characterized this model genetically and functionally. We discovered that the hDMD and hDMDdel52 transgene is present twice per locus, in a tail-to-tail-orientation. Long-read sequencing revealed a partial deletion of exon 52 (first 25 bp), and a 2.3 kb inversion in intron 51 in both copies. These new findings on the genomic make-up of the hDMD and hDMDdel52 transgene do not affect exon 51 and/or 53 skipping, but do underline the need for extensive genetic analysis of mice generated with genome editing techniques to elucidate additional genetic changes that might have occurred. The hDMDdel52/mdx mice were also evaluated functionally using kinematic gait analysis. This revealed a clear and highly significant difference in overall gait between hDMDdel52/mdx mice and C57BL6/J controls. The motor deficit detected in the model confirms its suitability for preclinical testing of exon skipping AONs for human DMD at both the functional and molecular level.


Subject(s)
Disease Models, Animal , Dystrophin/genetics , Gene Deletion , Muscular Dystrophy, Duchenne/genetics , Phenotype , Transgenes , Animals , Biomechanical Phenomena , Dystrophin/metabolism , Exons , Gait , Humans , Male , Mice , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/pathology
14.
Dis Model Mech ; 13(2)2020 02 21.
Article in English | MEDLINE | ID: mdl-32224495

ABSTRACT

Muscular dystrophies (MDs) encompass a wide variety of inherited disorders that are characterized by loss of muscle tissue associated with a progressive reduction in muscle function. With a cure lacking for MDs, preclinical developments of therapeutic approaches depend on well-characterized animal models that recapitulate the specific pathology in patients. The mouse is the most widely and extensively used model for MDs, and it has played a key role in our understanding of the molecular mechanisms underlying MD pathogenesis. This has enabled the development of therapeutic strategies. Owing to advancements in genetic engineering, a wide variety of mouse models are available for the majority of MDs. Here, we summarize the characteristics of the most commonly used mouse models for a subset of highly studied MDs, collated into a table. Together with references to key publications describing these models, this brief but detailed overview would be useful for those interested in, or working with, mouse models of MD.


Subject(s)
Disease Models, Animal , Muscular Dystrophies/pathology , Animals , Gene Targeting , Mice , Muscular Dystrophies/therapy
15.
Dis Model Mech ; 13(2)2020 02 25.
Article in English | MEDLINE | ID: mdl-32224497

ABSTRACT

Neuromuscular disorders (NMDs) encompass a diverse group of genetic diseases characterized by loss of muscle functionality. Despite extensive efforts to develop therapies, no curative treatment exists for any of the NMDs. For multiple disorders, however, therapeutic strategies are currently being tested in clinical settings, and the first successful treatments have now entered clinical practice (e.g. spinraza for spinal muscular atrophy). Successful clinical translation depends on the quality and translatability of preclinical findings and on the predictive value of the experimental models used in their initial development. This Special Issue of Disease Models & Mechanisms has a particular focus on translational research for NMDs. The collection includes original research focusing on advances in the development of novel in vitro and in vivo models, broader understanding of disease pathology and progression, and approaches to modify the disease course in these models. We also present a series of special articles and reviews that highlight our understanding of cellular mechanisms, biomarkers to tract disease pathology, the diversity of mouse models for NMDs, the importance of high-quality preclinical studies and data validation, and the pitfalls of successfully moving a potential therapeutic strategy to the clinic. In this Editorial, we summarize the highlights of these articles and place their findings in the broader context of the NMD research field.


Subject(s)
Biomedical Research , Neuromuscular Diseases/pathology , Animals , Disease Models, Animal , Humans , Mice , Muscle, Skeletal/pathology , Translational Research, Biomedical , Zebrafish
16.
FASEB J ; 34(4): 5525-5537, 2020 04.
Article in English | MEDLINE | ID: mdl-32141137

ABSTRACT

Skeletal muscles control posture, mobility and strength, and influence whole-body metabolism. Muscles are built of different types of myofibers, each having specific metabolic, molecular, and contractile properties. Fiber classification is, therefore, regarded the key for understanding muscle biology, (patho-) physiology. The expression of three myosin heavy chain (MyHC) isoforms, MyHC-1, MyHC-2A, and MyHC-2X, marks myofibers in humans. Typically, myofiber classification is performed by an eye-based histological analysis. This classical approach is insufficient to capture complex fiber classes, expressing more than one MyHC-isoform. We, therefore, developed a methodological procedure for high-throughput characterization of myofibers on the basis of multiple isoforms. The mean fluorescence intensity of the three most abundant MyHC isoforms was measured per myofiber in muscle biopsies of 56 healthy elderly adults, and myofiber classes were identified using computational biology tools. Unsupervised clustering revealed the existence of six distinct myofiber clusters. A comparison with the visual assessment of myofibers using the same images showed that some of these myofiber clusters could not be detected or were frequently misclassified. The presence of these six clusters was reinforced by RNA expressions levels of sarcomeric genes. In addition, one of the clusters, expressing all three MyHC isoforms, correlated with histological measures of muscle health. To conclude, this methodological procedure enables deep characterization of the complex muscle heterogeneity. This study opens opportunities to further investigate myofiber composition in comparative studies.


Subject(s)
Computational Biology/methods , Muscle Fibers, Skeletal/classification , Muscle Fibers, Skeletal/cytology , Muscle, Skeletal/cytology , Myosin Heavy Chains/metabolism , Female , Humans , Male , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism
17.
Front Behav Neurosci ; 14: 629043, 2020.
Article in English | MEDLINE | ID: mdl-33551769

ABSTRACT

Duchenne muscular dystrophy (DMD) is a severe, progressive neuromuscular disorder caused by mutations in the DMD gene resulting in loss of functional dystrophin protein. The muscle dystrophin isoform is essential to protect muscles from contraction-induced damage. However, most dystrophin isoforms are expressed in the brain. In addition to progressive muscle weakness, many DMD patients therefore also exhibit intellectual and behavioral abnormalities. The most commonly used mouse model for DMD, the mdx mouse, lacks only the full-length dystrophin isoforms and has been extensively characterized for muscle pathology. In this study, we assessed behavioral effects of a lack of full-length dystrophins on spontaneous behavior, discrimination and reversal learning, anxiety, and short-term spatial memory and compared performance between male and female mdx mice. In contrast to our previous study using only female mdx mice, we could not reproduce the earlier observed reversal learning deficit. However, we did notice small differences in the number of visits made during the Y-maze and dark-light box. Results indicate that it is advisable to establish standard operating procedures specific to behavioral testing in mdx mice to allow the detection of the subtle phenotypic differences and to eliminate inter and intra laboratory variance.

18.
J Cachexia Sarcopenia Muscle ; 11(2): 578-593, 2020 04.
Article in English | MEDLINE | ID: mdl-31849191

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by genetic loss of dystrophin protein. Extracellular microRNAs (ex-miRNAs) are putative, minimally invasive biomarkers of DMD. Specific ex-miRNAs (e.g. miR-1, miR-133a, miR-206, and miR-483) are highly up-regulated in the serum of DMD patients and dystrophic animal models and are restored to wild-type levels following exon skipping-mediated dystrophin rescue in mdx mice. As such, ex-miRNAs are promising pharmacodynamic biomarkers of exon skipping efficacy. Here, we aimed to determine the degree to which ex-miRNA levels reflect the underlying level of dystrophin protein expression in dystrophic muscle. METHODS: Candidate ex-miRNA biomarker levels were investigated in mdx mice in which dystrophin was restored with peptide-PMO (PPMO) exon skipping conjugates and in mdx-XistΔhs mice that express variable amounts of dystrophin from birth as a consequence of skewed X-chromosome inactivation. miRNA profiling was performed in mdx-XistΔhs mice using the FirePlex methodology and key results validated by small RNA TaqMan RT-qPCR. The muscles from each animal model were further characterized by dystrophin western blot and immunofluorescence staining. RESULTS: The restoration of ex-myomiR abundance observed following PPMO treatment was not recapitulated in the high dystrophin-expressing mdx-XistΔhs group, despite these animals expressing similar amounts of total dystrophin protein (~37% of wild-type levels). Instead, ex-miRNAs were present at high levels in mdx-XistΔhs mice regardless of dystrophin expression. PPMO-treated muscles exhibited a uniform pattern of dystrophin localization and were devoid of regenerating fibres, whereas mdx-XistΔhs muscles showed non-homogeneous dystrophin staining and sporadic regenerating foci. CONCLUSIONS: Uniform dystrophin expression is required to prevent ex-miRNA release, stabilize myofiber turnover, and attenuate pathology in dystrophic muscle.


Subject(s)
Dystrophin/metabolism , MicroRNAs/metabolism , Sarcolemma/metabolism , Animals , Child , Disease Models, Animal , Female , Humans , Mice , Sarcolemma/pathology
19.
Dis Model Mech ; 13(2)2019 10 01.
Article in English | MEDLINE | ID: mdl-31591145

ABSTRACT

For many genetic diseases, researchers are developing personalized medicine approaches. These sometimes employ custom genetic interventions such as antisense-mediated exon skipping or genome editing, aiming to restore protein function in a mutation-specific manner. Animal models can facilitate the development of personalized medicine approaches; however, given that they target human mutations and therefore human genetic sequences, scientists rely on the availability of humanized animal models. Here, we outline the usefulness, caveats and potential of such models, using the example of the hDMDdel52/mdx model, a humanized model recently generated for Duchenne muscular dystrophy (DMD).


Subject(s)
Animals, Genetically Modified/genetics , Disease Models, Animal , Precision Medicine , Animals , Dystrophin/genetics , Exons/genetics , Humans , Muscular Dystrophy, Duchenne/genetics
20.
PLoS One ; 14(8): e0220665, 2019.
Article in English | MEDLINE | ID: mdl-31430305

ABSTRACT

Limb girdle muscular dystrophy (LGMD) types 2D and 2F are caused by mutations in the genes encoding for α- and δ-sarcoglycan, respectively, leading to progressive muscle weakness. Mouse models exist for LGMD2D (Sgca-/-) and 2F (Sgcd-/-). In a previous natural history study, we described the pathology in these mice at 34 weeks of age. However, the development of muscle pathology at younger ages has not been fully characterised yet. We therefore performed a study into age-related changes in muscle function and pathology by examining mice at different ages. From 4 weeks of age onwards, male mice were subjected to functional tests and sacrificed at respectively 8, 16 or 24 weeks of age. Muscle histopathology and expression of genes involved in muscle pathology were analysed for several skeletal muscles, while miRNA levels were assessed in serum. In addition, for Sgcd-/- mice heart pathology was assessed. Muscle function showed a gradual decline in both Sgca-/- and Sgcd-/- mice. Respiratory function was also impaired at all examined timepoints. Already at 8 weeks of age, muscle pathology was prominent, and fibrotic, inflammatory and regenerative markers were elevated, which remained relatively constant with age. In addition, Sgcd-/- mice showed signs of cardiomyopathy from 16 weeks of age onwards. These results indicate that Sgca-/- and Sgcd-/- are relevant disease models for LGMD2D and 2F.


Subject(s)
Muscle, Skeletal/pathology , Sarcoglycanopathies/pathology , Aging , Animals , Disease Models, Animal , Gene Deletion , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Muscle, Skeletal/metabolism , Sarcoglycanopathies/genetics , Sarcoglycans/genetics
SELECTION OF CITATIONS
SEARCH DETAIL