Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(6): 4840-4846, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38291572

ABSTRACT

Stochastically fluctuating multiwell systems are a promising route toward physical implementations of energy-based machine learning and neuromorphic hardware. One of the challenges is finding tunable material platforms that exhibit such multiwell behavior and understanding how complex dynamic input signals influence their stochastic response. One such platform is the recently discovered atomic Boltzmann machine, where each stochastic unit is represented by a binary orbital memory state of an individual atom. Here, we investigate the stochastic response of binary orbital memory states to sinusoidal input voltages. Using scanning tunneling microscopy, we investigated orbital memory derived from individual Fe and Co atoms on black phosphorus. We quantify the state residence times as a function of various input parameters such as frequency, amplitude, and offset voltage. The state residence times for both species, when driven by a sinusoidal signal, exhibit synchronization that can be quantitatively modeled by a Poisson process based on the switching rates in the absence of a sinusoidal signal. For individual Fe atoms, we also observe a frequency-dependent response of the state favorability, which can be tuned by the input parameters. In contrast to Fe, there is no significant frequency dependence in the state favorability for individual Co atoms. Based on the Poisson model, the difference in the response of the state favorability can be traced to the difference in the voltage-dependent switching rates of the two different species. This platform provides a tunable way to induce population changes in stochastic systems and provides a foundation toward understanding driven stochastic multiwell systems.

2.
Sci Adv ; 9(9): eadf5500, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36857452

ABSTRACT

BCS theory has been widely successful at describing elemental bulk superconductors. Yet, as the length scales of such superconductors approach the atomic limit, dimensionality as well as the environment of the superconductor can lead to drastically different and unpredictable superconducting behavior. Here, we report a threefold enhancement of the superconducting critical temperature and gap size in ultrathin epitaxial Al films on Si(111), when approaching the 2D limit, based on high-resolution scanning tunneling microscopy/spectroscopy (STM/STS) measurements. Using spatially resolved spectroscopy, we characterize the vortex structure in the presence of a strong Zeeman field and find evidence of a paramagnetic Meissner effect originating from odd-frequency pairing contributions. These results illustrate two notable influences of reduced dimensionality on a BCS superconductor and present a platform to study BCS superconductivity in large magnetic fields.

3.
Phys Rev Lett ; 128(10): 106801, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35333070

ABSTRACT

Orbital memory is defined by two stable valencies that can be electrically switched and read out. To explore the influence of an electric field on orbital memory, we studied the distance-dependent influence of an atomic Cu donor on the state favorability of an individual Co atom on black phosphorus. Using low temperature scanning tunneling microscopy and spectroscopy, we characterized the electronic properties of individual Cu donors, corroborating this behavior with ab initio calculations based on density functional theory. We studied the influence of an individual donor on the charging energy and stochastic behavior of an individual Co atom. We found a strong impact on the state favorability in the stochastic limit. These findings provide quantitative information about the influence of local electric fields on atomic orbital memory.

4.
Rev Sci Instrum ; 92(3): 033906, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33820009

ABSTRACT

In the last decade, detecting spin dynamics at the atomic scale has been enabled by combining techniques such as electron spin resonance (ESR) or pump-probe spectroscopy with scanning tunneling microscopy (STM). Here, we demonstrate an ultra-high vacuum STM operational at milliKelvin (mK) temperatures and in a vector magnetic field capable of both ESR and pump-probe spectroscopy. By implementing GHz compatible cabling, we achieve appreciable RF amplitudes at the junction while maintaining the mK base temperature and high energy resolution. We demonstrate the successful operation of our setup by utilizing two experimental ESR modes (frequency sweep and magnetic field sweep) on an individual TiH molecule on MgO/Ag(100) and extract the effective g-factor. We trace the ESR transitions down to MHz into an unprecedented low frequency band enabled by the mK base temperature. We also implement an all-electrical pump-probe scheme based on waveform sequencing suited for studying dynamics down to the nanoseconds range. We benchmark our system by detecting the spin relaxation time T1 of individual Fe atoms on MgO/Ag(100) and note a field strength and orientation dependent relaxation time.

5.
Nat Nanotechnol ; 16(4): 414-420, 2021 04.
Article in English | MEDLINE | ID: mdl-33526837

ABSTRACT

The quest to implement machine learning algorithms in hardware has focused on combining various materials, each mimicking a computational primitive, to create device functionality. Ultimately, these piecewise approaches limit functionality and efficiency, while complicating scaling and on-chip learning, necessitating new approaches linking physical phenomena to machine learning models. Here, we create an atomic spin system that emulates a Boltzmann machine directly in the orbital dynamics of one well-defined material system. Utilizing the concept of orbital memory based on individual cobalt atoms on black phosphorus, we fabricate the prerequisite tuneable multi-well energy landscape by gating patterned atomic ensembles using scanning tunnelling microscopy. Exploiting the anisotropic behaviour of black phosphorus, we realize plasticity with multi-valued and interlinking synapses that lead to tuneable probability distributions. Furthermore, we observe an autonomous reorganization of the synaptic weights in response to external electrical stimuli, which evolves at a different time scale compared to neural dynamics. This self-adaptive architecture paves the way for autonomous learning directly in atomic-scale machine learning hardware.

6.
Nat Commun ; 9(1): 3904, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30254221

ABSTRACT

A magnetic atom epitomizes the scaling limit for magnetic information storage. Individual atomic spins have recently exhibited magnetic remanence, a requirement for magnetic memory. However, such memory has been only realized on thin insulating surfaces, removing potential tunability via electronic gating or exchange-driven magnetic coupling. Here, we show a previously unobserved mechanism for single-atom magnetic storage based on bistability in the orbital population, or so-called valency, of an individual Co atom on semiconducting black phosphorus (BP). Ab initio calculations reveal that distance-dependent screening from the BP surface stabilizes the two distinct valencies, each with a unique orbital population, total magnetic moment, and spatial charge density. Excellent correspondence between the measured and predicted charge densities reveal that such orbital configurations can be accessed and manipulated without a spin-sensitive readout mechanism. This orbital memory derives stability from the energetic barrier to atomic relaxation, demonstrating the potential for high-temperature single-atom information storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...