Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 28(19): 5695-5707, 2022 10.
Article in English | MEDLINE | ID: mdl-35876025

ABSTRACT

Aerobic metabolism generates 15-20 times more energy (ATP) than anaerobic metabolism, which is crucial in maintaining energy budgets in animals, fueling metabolism, activity, growth and reproduction. For ectothermic water-breathers such as fishes, low dissolved oxygen may limit oxygen uptake and hence aerobic metabolism. Here, we assess, within a phylogenetic context, how abiotic and biotic drivers explain the variation in hypoxia tolerance observed in fishes. To do so, we assembled a database of hypoxia tolerance, measured as critical oxygen tensions (Pcrit ) for 195 fish species. Overall, we found that hypoxia tolerance has a clear phylogenetic signal and is further modulated by temperature, body mass, cell size, salinity and metabolic rate. Marine fishes were more susceptible to hypoxia than freshwater fishes. This pattern is consistent with greater fluctuations in oxygen and temperature in freshwater habitats. Fishes with higher oxygen requirements (e.g. a high metabolic rate relative to body mass) also were more susceptible to hypoxia. We also found evidence that hypoxia and warming can act synergistically, as hypoxia tolerance was generally lower in warmer waters. However, we found significant interactions between temperature and the body and cell size of a fish. Constraints in oxygen uptake related to cellular surface area to volume ratios and effects of viscosity on the thickness of the boundary layers enveloping the gills could explain these thermal dependencies. The lower hypoxia tolerance in warmer waters was particularly pronounced for fishes with larger bodies and larger cell sizes. Previous studies have found a wide diversity in the direction and strength of relationships between Pcrit and body mass. By including interactions with temperature, our study may help resolve these divergent findings, explaining the size dependency of hypoxia tolerance in fish.


Subject(s)
Fishes , Oxygen , Animals , Cell Size , Hypoxia/metabolism , Oxygen/metabolism , Phylogeny , Temperature
2.
J Exp Biol ; 224(Pt 1)2021 01 11.
Article in English | MEDLINE | ID: mdl-33257437

ABSTRACT

Being composed of small cells may carry energetic costs related to maintaining ionic gradients across cell membranes as well as benefits related to diffusive oxygen uptake. Here, we test the hypothesis that these costs and benefits of cell size in ectotherms are temperature dependent. To study the consequences of cell size for whole-organism metabolic rate, we compared diploid and triploid zebrafish larvae differing in cell size. A fully factorial design was applied combining three different rearing and test temperatures that allowed us to distinguish acute from acclimated thermal effects. Individual oxygen consumption rates of diploid and triploid larvae across declining levels of oxygen availability were measured. We found that both acute and acclimated thermal effects affected the metabolic response. In comparison with triploids, diploids responded more strongly to acute temperatures, especially when reared at the highest temperature. These observations support the hypothesis that animals composed of smaller cells (i.e. diploids) are less vulnerable to oxygen limitation in warm aquatic habitats. Furthermore, we found slightly improved hypoxia tolerance in diploids. By contrast, warm-reared triploids had higher metabolic rates when they were tested at acute cold temperature, suggesting that being composed of larger cells may provide metabolic advantages in the cold. We offer two mechanisms as a potential explanation of this result, related to homeoviscous adaptation of membrane function and the mitigation of developmental noise. Our results suggest that being composed of larger cells provides metabolic advantages in cold water, while being composed of smaller cells provides metabolic advantages in warm water.


Subject(s)
Diploidy , Triploidy , Animals , Cell Size , Larva , Zebrafish/genetics
3.
PLoS One ; 15(3): e0229468, 2020.
Article in English | MEDLINE | ID: mdl-32119699

ABSTRACT

There is renewed interest in the regulation and consequences of cell size adaptations in studies on understanding the ecophysiology of ectotherms. Here we test if induction of triploidy, which increases cell size in zebrafish (Danio rerio), makes for a good model system to study consequences of cell size. Ideally, diploid and triploid zebrafish should differ in cell size, but should otherwise be comparable in order to be suitable as a model. We induced triploidy by cold shock and compared diploid and triploid zebrafish larvae under standard rearing conditions for differences in genome size, cell size and cell number, development, growth and swimming performance and expression of housekeeping genes and hsp70.1. Triploid zebrafish have larger but fewer cells, and the increase in cell size matched the increase in genome size (+ 50%). Under standard conditions, patterns in gene expression, ontogenetic development and larval growth were near identical between triploids and diploids. However, under demanding conditions (i.e. the maximum swimming velocity during an escape response), triploid larvae performed poorer than their diploid counterparts, especially after repeated stimuli to induce swimming. This result is consistent with the idea that larger cells have less capacity to generate energy, which becomes manifest during repeated physical exertion resulting in increased fatigue. Triploidy induction in zebrafish appears a valid method to increase specifically cell size and this provides a model system to test for consequences of cell size adaptation for the energy budget and swimming performance of this ectothermic vertebrate.


Subject(s)
Swimming/physiology , Triploidy , Zebrafish/physiology , Animals , Behavior, Animal , Cell Size , Cold-Shock Response , Diploidy , Female , Gene Expression Regulation, Developmental , Genome Size , Larva/genetics , Larva/growth & development , Larva/physiology , Male , Zebrafish/genetics , Zebrafish/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL