Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Front Immunol ; 15: 1330868, 2024.
Article En | MEDLINE | ID: mdl-38318175

Background: Ewing sarcoma (EwS) is an aggressive and highly metastatic bone and soft tissue tumor in pediatric patients and young adults. Cure rates are low when patients present with metastatic or relapsed disease. Therefore, innovative therapy approaches are urgently needed. Cellular- and oncolytic virus-based immunotherapies are on the rise for solid cancers. Methods: Here, we assess the combination of EwS tumor-associated antigen CHM1319-specific TCR-transgenic CD8+ T cells and the YB-1-driven (i.e. E1A13S-deleted) oncolytic adenovirus XVir-N-31 in vitro and in a xenograft mouse model for antitumor activity and immunostimulatory properties. Results: In vitro both approaches specifically kill EwS cell lines in a synergistic manner over controls. This effect was confirmed in vivo, with increased survival using the combination therapy. Further in vitro analyses of immunogenic cell death and antigen presentation confirmed immunostimulatory properties of virus-infected EwS tumor cells. As dendritic cell maturation was also increased by XVir-N-31, we observed superior proliferation of CHM1319-specific TCR-transgenic CD8+ T cells only in virus-tested conditions, emphasizing the superior immune-activating potential of XVir-N-31. Conclusion: Our data prove synergistic antitumor effects in vitro and superior tumor control in a preclinical xenograft setting. Combination strategies of EwS-redirected T cells and YB-1-driven virotherapy are a highly promising immunotherapeutic approach for EwS and warrant further evaluation in a clinical setting.


Oncolytic Virotherapy , Sarcoma, Ewing , Humans , Mice , Animals , Child , CD8-Positive T-Lymphocytes/pathology , Heterografts , Disease Models, Animal , Animals, Genetically Modified , Receptors, Antigen, T-Cell/genetics , Transcription Factors
2.
Front Oncol ; 14: 1304374, 2024.
Article En | MEDLINE | ID: mdl-38357194

Oncolytic viruses (OVs) selectively replicate in tumor cells resulting in lysis, spreading of new infectious units and induction of antitumor immune responses through abrogating an immunosuppressive tumor microenvironment (TME). Due to their mode of action, OVs are ideal combination partners with targeted immunotherapies. One highly attractive combination is the inhibition of the 'don't-eat-me'-signal CD47, which is known to increase the phagocytic potential of tumor-associated macrophages. In this work, we analyzed the combination approach consisting of the YB-1-based oncolytic adenovirus XVir-N-31 (XVir) and the CD47 inhibitor (CD47i) B6.H12.2 concerning its phagocytic potential. We investigate phagocytosis of XVir-, adenovirus wildtype (AdWT)-, and non-infected established pediatric sarcoma cell lines by different monocytic cells. Phagocytes (immature dendritic cells and macrophages) were derived from THP-1 cells and healthy human donors. Phagocytosis of tumor cells was assessed via FACS analysis in the presence and absence of CD47i. Additional characterization of T cell-stimulatory surface receptors as well as chemo-/cytokine analyses were performed. Furthermore, tumor cells were infected and studied for the surface expression of the 'eat-me'-signal calreticulin (CALR) and the 'don't-eat-me'-signal CD47. We herein demonstrate that (1) XVir-infected tumor cells upregulate both CALR and CD47. XVir induces higher upregulation of CD47 than AdWT. (2) XVir-infection enhances phagocytosis in general and (3) the combination of XVir and CD47i compared to controls showed by far superior enhancement of phagocytosis, tumor cell killing and innate immune activation. In conclusion, the combination of CD47i and XVir causes a significant increase in phagocytosis exceeding the monotherapies considerably accompanied by upregulation of T cell-stimulatory receptor expression and inflammatory chemo/-cytokine secretion.

3.
Clin Cancer Res ; 29(10): 1996-2011, 2023 05 15.
Article En | MEDLINE | ID: mdl-36892582

PURPOSE: Ewing sarcoma (EwS) is a highly malignant pediatric tumor characterized by a non-T-cell-inflamed immune-evasive phenotype. When relapsed or metastasized, survival is poor, emphasizing the need for novel treatment strategies. Here, we analyze the novel combination approach using the YB-1-driven oncolytic adenovirus XVir-N-31 and CDK4/6 inhibition to augment EwS immunogenicity. EXPERIMENTAL DESIGN: In vitro, viral toxicity, replication, and immunogenicity were studied in several EwS cell lines. In vivo tumor xenograft models with transient humanization were applied to evaluate tumor control, viral replication, immunogenicity, and dynamics of innate as well as human T cells after treatment with XVir-N-31 combined with CDK4/6 inhibition. Furthermore, immunologic features of dendritic cell maturation and T-cell-stimulating capacities were assessed. RESULTS: The combination approach significantly increased viral replication and oncolysis in vitro, induced HLA-I upregulation, and IFNγ-induced protein 10 expression and enhanced maturation of monocytic dendritic cells with superior capacities to stimulate tumor antigen-specific T cells. These findings were confirmed in vivo showing tumor infiltration by (i) monocytes with antigen-presenting capacities and M1 macrophage marker genes, (ii) TReg suppression in spite of adenovirus infection, (iii) superior engraftment, and (iv) tumor infiltration by human T cells. Consequently, survival was improved over controls with signs of an abscopal effect after combination treatment. CONCLUSIONS: The joint forces of the YB-1-driven oncolytic adenovirus XVir-N-31 and CDK4/6 inhibition induce therapeutically relevant local and systemic antitumor effects. Innate as well as adaptive immunity against EwS is boosted in this preclinical setting, pointing toward high therapeutic potential in the clinic.


Adenoviridae Infections , Oncolytic Virotherapy , Oncolytic Viruses , Sarcoma, Ewing , Child , Humans , Sarcoma, Ewing/pathology , Adenoviridae/genetics , Cell Line, Tumor , Adaptive Immunity , Oncolytic Viruses/genetics , Xenograft Model Antitumor Assays , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism
...