Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters











Publication year range
1.
Molecules ; 29(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38998915

ABSTRACT

Against the backdrop of "carbon neutrality", the green treatment of dye wastewater is particularly important. Currently, the adsorption method shows strong application prospects. Therefore, selecting efficient and recyclable adsorbents is of significant importance. TiO2 is an excellent adsorbent, but its difficult recovery often leads to secondary pollution. γ-Fe2O3-modified coal-series kaolin exhibits both excellent adsorption properties and rapid separation through magnetic separation technology. By utilizing the synergistic effects of both, TiO2/-γFe2O3 coal-series kaolin, magnetic adsorbent regeneration materials were prepared using coprecipitation method and characterized. The influencing factors of this functional material on the adsorption of Congo red dye and its regeneration performance are discussed. The experimental results indicated that the specific surface area, pore volume and Ms value of this functional material are 127.5 m2/g, 0.38 cm3/g, and 13.4 emu/g, respectively. It exhibits excellent adsorption characteristics towards Congo red, with an adsorption rate reaching 96.8% within 10 min, conforming to the pseudo-second-order kinetic model, and demonstrating Langmuir IV-type monolayer adsorption. After the adsorption of Congo red, magnetic separation shows superior efficiency. Furthermore, treatment of the adsorbed composite with EDTA allows for recycling, with adsorption rates still above 91% after three cycles, indicating an excellent regeneration capability.

2.
Gels ; 10(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38786204

ABSTRACT

Water pollution by organic dyes represents a major health and environmental issue. Despite the fact that peptide-based hydrogels are considered to be optimal absorbents for removing such contaminants, hydrogel systems often suffer from a lack of mechanical stability and complex recovery. Recently, we developed an enzymatic approach for the preparation of a new peptide-based magnetogel containing polyacrylic acid-modified γ-Fe2O3 nanoparticles (γ-Fe2O3NPs) that showed the promising ability to remove cationic metal ions from aqueous phases. In the present work, we tested the ability of the magnetogel formulation to remove three model organic dyes: methyl orange, methylene blue, and rhodamine 6G. Three different hydrogel-based systems were studied, including: (1) Fmoc-Phe3 hydrogel; (2) γ-Fe2O3NPs dispersed in the peptide-based gel (Fe2O3NPs@gel); and (3) Fe2O3NPs@gel with the application of a magnetic field. The removal efficiencies of such adsorbents were evaluated using two different experimental set-ups, by placing the hydrogel sample inside cuvettes or, alternatively, by placing them inside syringes. The obtained peptide magnetogel formulation could represent a valuable and environmentally friendly alternative to currently employed adsorbents.

3.
Heliyon ; 10(10): e30810, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38778945

ABSTRACT

In this work, the transformation of waste iron cans to gamma iron oxide (γ-Fe2O3) nanoparticles following acid leaching precipitation method along with their structural, surface chemistry, and magnetic properties was studied. Highly magnetic iron-based nanomaterials, maghemite with high saturation magnetization have been synthesized through an acid leaching technique by carefully tuning of pH and calcination temperature. The phase composition and crystal structure, surface morphology, surface chemistry, and surface composition of the synthesized γ-Fe2O3 nanoparticles were explored by X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDS). The XRD results confirm the cubic spinel structure having crystallite size 26.90-52.15 nm. The XPS study reveals the presence of Fe, O element and the binding energy of Fe (710.31 and 724.48 eV) confirms the formation of γ-Fe2O3 as well. By dynamic light scattering (DLS) method and zeta potential analyzer, the particle size distribution and stability of the systems were investigated. The magnetic behavior of the synthesized γ-Fe2O3 nanoparticles were studied using a vibrating sample magnetometer (VSM) which confirmed the ferrimagnetic particles with saturation magnetization of 54.94 emu/g. The resultant maghemite nanoparticles will be used in photocatalysts and humidity sensing. The net impact of the work stated here is based on the principle of converting waste into useful nanomaterials. Finally, it was concluded that our results can give insights into the design of the synthesis procedure from the precursor to the high-quality gamma iron oxide nanoparticles with high saturation magnetization for different potential applications which are inexpensive and very simple.

4.
Nano Lett ; 23(22): 10498-10504, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37939014

ABSTRACT

Nonlayered two-dimensional (2D) magnets have attracted special attention, as many of them possess magnetic order above room temperature and enhanced chemical stability compared to most existing vdW magnets, which offers remarkable opportunities for developing compact spintronic devices. However, the growth of these materials is quite challenging due to the inherent three-dimensionally bonded nature, which hampers the study of their magnetism. Here, we demonstrate the controllable growth of air-stable pure γ-Fe2O3 nanoflakes by a confined-vdW epitaxial approach. The lateral size of the nanoflakes could be adjusted from hundreds of nanometers to tens of micrometers by precisely controlling the annealing time. Interestingly, a lateral-size-dependent magnetic domain configuration was observed. As the sizes continuously increase, the magnetic domain evolves from single domain to vortex and finally to multidomain. This work provides guidance for the controllable synthesis of 2D inverse spinel-type crystals and expands the range of magnetic vortex materials into magnetic semiconductors.

5.
Molecules ; 28(19)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37836776

ABSTRACT

Highly porous membranes based on polyvinylidene fluoride (PVDF) with the addition of nanoscale particles of non-magnetic and magnetic iron oxides were synthesized using a combined method of non-solvent induced phase separation (NIPS) and thermo-induced phase separation (TIPS) based on the technique developed by Dr. Blade. The obtained membranes were characterized using SEM, EDS, XRD, IR, diffuse reflectance spectroscopy, and fluorescent microscopy. It was shown that the membranes possessed a high fraction of electroactive phase, which increased up to a maximum of 96% with the addition of 2 wt% of α-Fe2O3 and α/γ-Fe2O3 nanoparticles. It was demonstrated that doping PVDF with nanoparticles contributed to the reduction of pore size in the membrane. All membranes exhibited piezocatalytic activity in the degradation of Rhodamine B. The degree of degradation increased from 69% when using pure PVDF membrane to 90% when using the composite membrane. The nature of the additive did not affect the piezocatalytic activity. It was determined that the main reactive species responsible for the degradation of Rhodamine B were •OH and •O2-. It was also shown that under piezocatalytic conditions, composite membranes generated a piezopotential of approximately 2.5 V.

6.
Bioresour Technol ; 387: 129572, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37506927

ABSTRACT

A novel oxidative magnetization, involving phosphomolybdic acid and Fe(NO3)3 co-promoted pyrolysis, was established to manufacture highly adsorptive magnetic biochars for adsorbing aqueous tetracycline, methylene blue, and Cr6+. The modification of phosphomolybdic acid greatly boosted the formation of γ-Fe2O3 and oxygen containing groups with enhancement of specific surface area and pore volume at 400 °C. Importantly, γ-Fe2O3 was stably fixed on surface in quasi-nanoscale. The oxidized magnetic biochar displayed 631.53, 158.45, 155.13 mg/g adsorption capabilities for tetracycline, methylene blue, and Cr6+ with 22.79 emu/g saturation magnetization, respectively. Oxygen containing groups and quasi-nanoscale γ-Fe2O3 served as key adsorption sites for these pollutants. A general oxidative magnetization was established for manufacturing high-performance magnetic biochar through phosphomolybdic acid/Fe(NO3)3 co-promoted pyrolysis at relatively low temperature.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Temperature , Pyrolysis , Methylene Blue , Charcoal , Adsorption , Oxidative Stress , Tetracyclines
7.
J Colloid Interface Sci ; 652(Pt A): 692-704, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37453873

ABSTRACT

With the current upsurge in hydrogen economies all over the world, an increased demand for improved chemiresistive H2 sensors that are highly responsive and fast acting when exposed to gases is expected. Owing to safety concerns about explosive and highly flammable H2 gas, it is important to develop resistive sensors that can detect the leakage of H2 gas swiftly and selectively. Currently, interest in metal-organic frameworks (MOFs) for gas-sensor applications is increasing due to their open-metal sites, large surface area, and unique surface morphologies. In this research, a highly selective and sensitive H2-sensor was established based on graphitic carbon (GC) anchored spherical Pd@PdO core-shells over γ-Fe2O3 microcube (Pd@PdO/γ-Fe2O3@GC which is termed as S3) heterostructure materials. The combined solvothermal followed by controlled calcination-assisted S3 exhibited a specific morphology with the highest surface area of 79.12 m2 g-1, resulting in fast response and recovery times (21 and 29 s, respectively), and excellent sensing performance (ΔR/R0∼ 96.2 ± 1.5), outstanding long-term stability, and a 100 ppb detection limit when detecting H2-gas at room temperature (mainly in very humid surroundings). This result proves that adsorption sites provided by S3 can promote surface reactions (adsorption and desorption) for ultrasensitive and selective H2gas sensors.

8.
J Hazard Mater ; 445: 130593, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-37055996

ABSTRACT

In this study, a novel γ-Fe2O3/biochar (BFγ) composite by a plant in-situ enrichment and one-step pyrolysis strategy was prepared, which was applied as a photocatalyst to activate peroxymonosulfate (PMS) for the degradation of p-chlorophenol (4-CP) under visible light irradiation (BFγ/PMS/Vis) system. The characterization results exhibited that γ-Fe2O3 with localized carbon doping was evenly embedded in biochar during the pyrolysis. BFγ exhibited better photoresponse properties than biochar (BC) and γ-Fe2O3. The removal efficiency of this system for 4-CP reached 96.41% under optimal conditions. This system showed high removal efficiency with a wide pH range (3.0-13.0) and under conditions of different organic pollutants. It also showed strong resistance to interference with co-existing inorganic ions and humic acid (HA). Electron paramagnetic resonance (EPR) and radical scavenging experiments revealed that the reactive oxygen species (ROS) in this system included SO4-·, ·OH, ·O2- and 1O2. The density functional theoretical (DFT) calculations further revealed the promotion of localized carbon doping in γ-Fe2O3 on electron transfer and photoresponse, including C-O bond (d=1.29 Å), C-Fe bond (d=1.80 Å) and band gap value (Egap < 0.72 eV). This study provides new insights into constructing environmentally-friendly catalysts and the possibility of the solid waste recycling for other wetland plants.

9.
Molecules ; 28(5)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36903617

ABSTRACT

γ-Fe2O3 is considered to be a promising catalyst for the selective catalytic reduction (SCR) of nitrogen oxide (NOx). In this study, first-principle calculations based on the density function theory (DFT) were utilized to explore the adsorption mechanism of NH3, NO, and other molecules on γ-Fe2O3, which is identified as a crucial step in the SCR process to eliminate NOx from coal-fired flue gas. The adsorption characteristics of reactants (NH3 and NOx) and products (N2 and H2O) at different active sites of the γ-Fe2O3 (111) surface were investigated. The results show that the NH3 was preferably adsorbed on the octahedral Fe site, with the N atom bonding to the octahedral Fe site. Both octahedral and tetrahedral Fe atoms were likely involved in bonding with the N and O atoms during the NO adsorption. The NO tended to be adsorbed on the tetrahedral Fe site though the combination of the N atom and the Fe site. Meanwhile, the simultaneous bonding of N and O atoms with surface sites made the adsorption more stable than that of single atom bonding. The γ-Fe2O3 (111) surface exhibited a low adsorption energy for N2 and H2O, suggesting that they could be adsorbed onto the surface but were readily desorbed, thus facilitating the SCR reaction. This work is conducive to reveal the reaction mechanism of SCR on γ-Fe2O3 and contributes to the development of low-temperature iron-based SCR catalysts.

10.
J Biomed Mater Res A ; 111(9): 1344-1357, 2023 09.
Article in English | MEDLINE | ID: mdl-36939155

ABSTRACT

Though magnetic iron oxide nanoparticles (IONPs) are approved for clinical use as contrast agents for MR imaging in United States and Europe, and are widely used to label cells in research, the relationship between IONPs and mesenchymal stem cells (MSCs) is not fully addressed. Here the effects of consistently appeared γ-Fe2 O3 on the lineage commitment of MSCs were studied to optimize applications of IONPs in MSCs upon verification of viability. 30 nm 10 µg/mL induced highest promotions on osteogenesis, while 30 and 50 nm of 100 µg/mL elicited most chondrogensis in 14 days, where the effects on ALP, GAG and SOX9 appeared after 7 days, while on RUNX2 came out after 10 days. γ-Fe2 O3 enhanced intracellular and extracellular Fe3+ and ROS, modulated F-actin and decreased Lamin A of MSCs at different time scale. The disturbances of F-actin, Lamin A or ROS altered the effects of γ-Fe2 O3 on MSC differentiation. Our results demonstrate that different size, concentration and modulation of γ-Fe2 O3 are needed in its MSC applications for bone and cartilage tissues. Furthermore, an undocumented phenomenon that the modulation of F-actin affected the Lamin A expression in MSCs was observed.


Subject(s)
Actins , Mesenchymal Stem Cells , Actins/metabolism , Lamin Type A/metabolism , Reactive Oxygen Species/metabolism , Cell Differentiation , Osteogenesis
11.
J Colloid Interface Sci ; 639: 464-471, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36827912

ABSTRACT

Fe2O3 is a promising n-type semiconductor as the photoanode of photoelectrochemical water-splitting method due to its abundance, low cost, environment-friendly, and high chemical stability. However, the recombination of photogenerated holes and electrons leads to low solar-to-hydrogen efficiency. In this work, to overcome the recombination issue, a p-type semiconductor, CuO, is introduced underneath the γ-Fe2O3 to synthesize γ-Fe2O3/CuO on the FTO substrate. Along with the formation of p-n heterojunction, CuFe2O4 is in situ generated at the interface of γ-Fe2O3 and CuO. The existence of Cu2O in CuO and CuFe2O4 promotes the charge transfer from CuO to γ-Fe2O3 and within CuFe2O4, respectively, resulting in creating an internal electric field in γ-Fe2O3/CuO and leading to the conduction band of CuO bending up and γ-Fe2O3 bending down. Additionally, Cu(II) in CuFe2O4 contributes to fast electron capture. Consequently, the charge transfer efficiency and charge separation efficiency of photo-generated holes are promoted. Hence, γ-Fe2O3/CuO exhibits an enhanced photocurrent density of 13.40 mA cm-2 (1.9 times higher than γ-Fe2O3). The photo corrosion resistance of CuO is dramatically increased with the protection of CuFe2O4, resulting in superior high chemical stability, i.e. 85% of the initial activity remains after a long-term test.

12.
Environ Monit Assess ; 195(3): 372, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36754902

ABSTRACT

This pilot study synthesized the γ-Fe2O3@SiO2@ZIF8-Ag nanocomposites via the hydrothermal method to study its potential use in amoxicillin degradation as a novel photocatalyst in aqueous solutions under visible light radiation. Various diagnostic methods were used to determine the morphology and functional structure of the photocatalyst, and the results confirmed its proper formation. Complete degradation of AMX was obtained at a pH of 5, catalyst dosage of 0.4 g/L, AMX concentration of 10 mg/L, and reaction time of 60 min. The efficiency of the degradation was diminished when anions were present in the reaction medium, and the order of their effect was SO42- < Cl- < NO3- < HCO3-. Biodegradability (BOD5/COD ratio) increased from 0.20 to 0.68 after 120 min of photocatalytic treatment, with a COD removal of 87.54% and a TOC removal of 74.88%. Through the experimental trapping of electrons, we found the production of reactive species, such as hydroxyl radical (•OH), superoxide (O2•-), and holes (h+), in the photocatalysis reactor and that •OH was the predominant species in AMX photodegradation. Comparative experiments emphasized that the oxidation process occurs with the adsorption of pollutants on the surface of the catalyst, and the photocatalyst has the potential to be activated by various light sources, including visible light, UV light, and sunlight, with an AMX decomposition above 88%. The synthesized particles can be recovered after five consecutive cycles with minimal reduction in the degradation rate (< 4%). γ-Fe2O3@SiO2@ZIF8-Ag can be considered a promising photocatalyst for use in AMX degradation due to its recyclability, easier activation by different light sources, and excellent mineralization.


Subject(s)
Amoxicillin , Silicon Dioxide , Amoxicillin/analysis , Pilot Projects , Environmental Monitoring , Light , Catalysis
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122207, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36502763

ABSTRACT

This work describes biologically important nanostructures of metals (AgNPs, AuNPs, and PtNPs) and metal oxides (Cu2ONPs, CuONSs, γ-Fe2O3NPs, ZnONPs, ZnONPs-GS, anatase-TiO2NPs, and rutile-TiO2NPs) synthesized by different methods (wet-chemical, electrochemical, and green-chemistry methods). The nanostructures were characterized by molecular spectroscopic methods, including scanning/transmission electron microscopy (SEM/TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-vis), dynamic light scattering (DLS), Raman scattering spectroscopy (RS), and infrared light spectroscopy (IR). Then, a peptide (bombesin, BN) was adsorbed onto the surface of these nanostructures from an aqueous solution with pH of 7 that did not contain surfactants. Adsorption was monitored using surface-enhanced Raman scattering spectroscopy (SERS) to determine the influence of the nature of the metal surface and surface evolution on peptide geometry. Information from the SERS studies was compared with information on the biological activity of the peptide. The SERS enhancement factor was determined for each of the metallic surfaces.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Oxides , Water
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 2): 122087, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36417818

ABSTRACT

Core-shell nanoparticles have been extensively researched, particularly as multimodal for medical applications. Scientists are interested in combining the optical properties of nano-plasmonic nanoparticles with the magnetic properties of super-paramagnetic nanoparticles. This combination is very important because it reduces metal toxicity and improves nanoparticle targeting. Tuning the shape and size of the nanoparticles significantly reflects their properties and applications. In previous study, we assessed the SPION@Ag@chitosan core-shell nanocomposite (γFe2O3@Ag@Cs NCs) toxicity both in vitro and preclinically in vivo, using traditional toxicological assessment and biochemical parameters. The results showed that up to100 ug/kg is a safe NP dose as evaluated by pathological and biochemical parameters. The aim of the present study was to gain insight into the effect of γFe2O3@Ag@Cs NC at sub-cytotoxic concentrations (100ug/ml) on the biochemical profile of immune organs (inguinal, axillary, spleen and thymus) by combining the investigation of cytokine secretion to ex vivo FTIR spectroscopy. The four immune organs were treated with 100 ug/kg NC and the time dependence of the effects produced by the treatment was analyzed. The Data shows that the used core-shell NC with the indicate dose have a stimulatory effect on the immune system, as evidenced by an increase in antibody secretion (IgG and IgM), lipid, nucleic acid, and protein synthesis after uptake time which depends on the specific immune organ.


Subject(s)
Chitosan , Nanocomposites , Spectroscopy, Fourier Transform Infrared , Microscopy , Adjuvants, Vaccine
15.
Article in English | MEDLINE | ID: mdl-36554671

ABSTRACT

Biochar loading mixed-phase iron oxide shows great advantages as a promising catalyst owing to its eco-friendliness and low cost. Here, γ-Fe2O3-x@biochar (E/Fe-N-BC) composite was successfully prepared by the sol-gel method combined with low-temperature (280 °C) reduction. The Scanning Electron Microscope (SEM) result indicated that γ-Fe2O3-x particles with the size of approximately 200 nm were well-dispersed on the surface of biochar. The CO derived from biomass pyrolysis is the main reducing component for the generation of Fe (II). The high content of Fe (II) contributed to the excellent catalytic performance of E/Fe-N-BC for quinclorac (QNC) degradation in the presence of peroxymonosulfate (PMS). The removal efficiency of 10 mg/L of QNC was 100% within 30 min using 0.3 g/L γ-Fe2O3-x@biochar catalyst and 0.8 mM PMS. The radical quenching experiments and electron paramagnetic resonance analysis confirmed that •OH and SO4•- were the main radicals during the degradation of QNC. The facile and easily mass-production of γ-Fe2O3-x@biochar with high catalytic activity make it a promising catalyst to activate PMS for the removal of organic pollutants.


Subject(s)
Charcoal , Temperature
16.
Nanomaterials (Basel) ; 12(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36014663

ABSTRACT

Multi-walled carbon nanotubes (MWCNTs) decorated with Ag nanoparticles (NPs) are bifunctional adsorbent nanomaterials with antibacterial activity. They can be magnetically recovered from wastewater in case of coupling with γ-Fe2O3. In this study, for the first time, an environmentally friendly technique was applied to prepare a nanocomposite (NC) material composed of γ-Fe2O3/MWCNT/Ag by using Bridgestone disposable tires and Viscum album leaves extract. γ-Fe2O3/MWCNTs/Ag NC was employed for the removal of sulfamethazine (SMT) from aqueous solutions. Under the optimized conditions determined via the Taguchi method, the highest SMT adsorption capacity of the γ-Fe2O3/MWCNT/Ag NC was measured to be 47.6 mg/g. The experimental data fitted well with the pseudo-second-order kinetic model and the Langmuir isotherm. The thermodynamic parameters implied that the adsorption process was endothermic. In addition to adsorption of the drug pollutant, the NC demonstrated a superior antibacterial activity against Gram-positive bacteria. The reusability test also showed that over 79% SMT can be removed using γ-Fe2O3/MWCNTs/Ag NC even after four adsorption cycles. Taken together, γ-Fe2O3/MWCNTs/Ag NC was proven to be a promising antibacterial nano-adsorbent for wastewater treatment.

17.
Environ Sci Pollut Res Int ; 29(46): 69785-69797, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35578074

ABSTRACT

γ-Fe2O3/La/Bi2WO6 heterojunction composites have been successfully synthesized by simple and convenient hydrothermal method. The photocatalytic activity of the prepared samples was evaluated by the degradation of tetracycline hydrochloride (TCH) solution under simulated visible light irradiation. The results indicated that the removal rate of γ-Fe2O3/La/Bi2WO6 samples was higher than that of pure Bi2WO6 and La/Bi2WO6, among which 5%γ-Fe2O3/La/Bi2WO6 had the highest photocatalytic activity. The removal rate of TCH solution can reach 92.42% in 220 min. The as-prepared samples were characterized by scanning electron microscope (SEM), Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), and UV-vis diffuse reflectance spectrum (DRS). The material morphology of γ-Fe2O3/La/Bi2WO6 was nano-flake. γ-Fe2O3/La-doped Bi2WO6 did not damage the crystal phase and structure of Bi2WO6. Through getting insight into the mechanism, γ-Fe2O3/La doping increased the specific surface area of Bi2WO6 and inhibited the recombination of photogenerated electron pairs, thus enhancing the photocatalytic activity. h+ and ·O2- were the main active substances in the photocatalytic degradation of TCH solution by γ-Fe2O3/La/Bi2WO6 photocatalysts. In order to better explain the photocatalytic degradation process of TCH solution by γ-Fe2O3/La/Bi2WO6 photocatalyst, a possible removal mechanism was proposed for the first time. Moreover, γ-Fe2O3/La/Bi2WO6 sample is magnetic and easy to recover. At the same time, the high stability of γ-Fe2O3/La/Bi2WO6 sample can be reused.


Subject(s)
Light , Tetracycline , Catalysis , Photoelectron Spectroscopy , X-Ray Diffraction
18.
Chemosphere ; 303(Pt 2): 135105, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35640682

ABSTRACT

The immobilized coatings as a kind of promising Fenton-like catalysts with excellent performance and reusability for the efficient degradation of antibiotics and phenol under solar light irradiation is investigated. Herein, the porous γ-Fe2O3/SiO2 immobilized ceramic coating on TC4 titanium alloy as photo-Fenton catalyst was prepared via plasma electrolytic oxidation technology. The as-obtained immobilized coating manifested a remarkable catalytic activity that the removal efficiencies of phenol and various antibiotics could reach more than 92% within 90 min, and presented excellent reusability after six runs in phenol removal. The high activity and excellent reusability of γ-Fe2O3 were attributed to the synergistic effect of multiple pathways to jointly produce abundant •OH, and the combination of γ-Fe2O3 and SiO2 in the coating could effectively reduce iron leaching during the heterogeneous photo-Fenton process, respectively. This work provides a novel strategy for the synthesis of high-performance photo-Fenton catalysts to dispose of wastewater in the future.


Subject(s)
Silicon Dioxide , Titanium , Alloys , Anti-Bacterial Agents , Catalysis , Hydrogen Peroxide , Phenol
19.
Chem Asian J ; 17(12): e202200205, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35416424

ABSTRACT

As a high-capacity anode material for lithium ion batteries, γ-Fe2 O3 is a promising alternative to conventional graphite among multifarious transition metal oxides owing to its high theoretical specific capacity (1007 mAh g-1 ), abundant reserves, good safety and low cost. However, improving the electrical conductivity and overcoming the morphological damage caused by the severe volume expansion during cycling are still the tricky problems to be solved. Herein, a three-dimensional heterostructure composite (γ-Fe2 O3 /PC-rGO60 ) was prepared by a facile solvothermal reaction followed by heat treatment in inert atmosphere. This composite material exhibits a reversible charge specific capacity of 1035 mAh g-1 at the current density of 0.1 A g-1 . After 100 cycles at 0.2 A g-1 , the capacity is increased from 966.2 to 1091.1 mAh g-1 . Even cycled for 200 cycles at 1 A g-1 , the capacity is only decreased from 751.4 to 670.6 mAh g-1 , giving capacity retention of 89.3%. The rGO network supported flexible composite architecture is beneficial for accommodating the volume expansion of the γ-Fe2 O3 active material during the lithiation/delithiation process. Besides, the conductive rGO network and the in-situ formed pyrolytic carbon (PC) can provide a smooth electron transmission path and a favorable lithium ion transport channel.

20.
Adv Healthc Mater ; 11(11): e2102632, 2022 06.
Article in English | MEDLINE | ID: mdl-35107866

ABSTRACT

Traditional cancer therapy is limited by poor prognosis and risk of recurrence. Emerging therapies offer alternatives to these problems. In addition, synergistic therapy can combine the advantages of multiple therapies to eliminate cancer cells while attenuating damage to normal tissues. Herein, a theranostic nanoplatform based on the chemotherapeutic drug mitoxantrone (MTO) and glucose oxidase (GOx) co-loaded γ-Fe2 O3 nanoparticles (MTO-GOx@γ-Fe2 O3 NPs) is designed and prepared to realize photoacoustic imaging-guided chemo/chemodynamic/photothermal (CT/CDT/PTT) synergistic cancer therapy. With a particle size of about 86.2 nm, the synthesized MTO-GOx@γ-Fe2 O3 NPs can selectively accumulate at tumor sites by enhanced permeability and retention (EPR) effects. After entering cancer cells by endocytosis, MTO-GOx@γ-Fe2 O3 NPs decompose into Fe3+ ions and release cargo because of their pH-responsive characteristic. As a Food and Drug Administration (FDA)-approved chemotherapy drug, MTO shows strong DNA disruption ability and satisfying photothermal conversion ability under laser irradiation for photothermal therapy. Simultaneously, GOx catalyzes the decomposition of glucose and generates hydrogen peroxide (H2 O2 ) to enhance the chemodynamic therapy efficiency. In vitro and in vivo experiments reveal that MTO-GOx@γ-Fe2 O3 NPs possess a significant synergistic therapeutic effect in cancer treatment.


Subject(s)
Nanoparticles , Neoplasms , Cell Line, Tumor , Glucose Oxidase , Humans , Hydrogen-Ion Concentration , Mitoxantrone/pharmacology , Mitoxantrone/therapeutic use , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Photothermal Therapy
SELECTION OF CITATIONS
SEARCH DETAIL