Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters











Publication year range
1.
Pharmacol Res ; 208: 107348, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39134186

ABSTRACT

Fibrosis refers to the progressive tissue lesion process characterized by excessive secretion and deposition of extracellular matrix (ECM). Abnormal fibrous tissue deposition distorts tissue architecture and leads to the progressive loss of organ function. Notably, fibrosis is one of the primary pathological appearances of many end stage illnesses, and is considered as a lethal threat to human health, especially in the elderly with ageing-related diseases. CX3C ligand 1 (CX3CL1) is the only member of chemokine CX3C and binds specifically to CX3C receptor 1 (CX3CR1). Different from other chemokines, CX3CL1 possesses both chemotactic and adhesive activity. CX3CL1/CX3CR1 axis involves in various physiological and pathological processes, and exerts a critical role in cells from the immune system, vascular system, and nervous system etc. Notably, increasing evidence has demonstrated that CX3CL1/CX3CR1 signaling pathway is closely related to the pathological process of fibrosis in multiple tissue and organs. We reviewed the crucial role of CX3CL1/CX3CR1 axis in fibrosis and ageing and systematically summarized the underlying mechanism, which offers prospective strategies of targeting CX3C for the therapy of fibrosis and ageing-related diseases.


Subject(s)
Aging , Fibrosis , Humans , Aging/metabolism , Aging/pathology , Animals , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , Chemokine CX3CL1/metabolism , Signal Transduction , Chemokines, CX3C/metabolism
2.
Int J Mol Sci ; 25(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39062768

ABSTRACT

Diabetes mellitus (DM) is the most common metabolic disease in humans, and its prevalence is increasing worldwide in parallel with the obesity pandemic. A lack of insulin or insulin resistance, and consequently hyperglycemia, leads to many systemic disorders, among which diabetic encephalopathy (DE) is a long-term complication of the central nervous system (CNS), characterized by cognitive impairment and motor dysfunctions. The role of oxidative stress and neuroinflammation in the pathomechanism of DE has been proven. Fractalkine (CX3CL1) has unique properties as an adhesion molecule and chemoattractant, and by acting on its only receptor, CX3CR1, it regulates the activity of microglia in physiological states and neuroinflammation. Depending on the clinical context, CX3CL1-CX3CR1 signaling may have neuroprotective effects by inhibiting the inflammatory process in microglia or, conversely, maintaining/intensifying inflammation and neurotoxicity. This review discusses the evidence supporting that the CX3CL1-CX3CR1 pair is neuroprotective and other evidence that it is neurotoxic. Therefore, interrupting the vicious cycle within neuron-microglia interactions by promoting neuroprotective effects or inhibiting the neurotoxic effects of the CX3CL1-CX3CR1 signaling axis may be a therapeutic goal in DE by limiting the inflammatory response. However, the optimal approach to prevent DE is simply tight glycemic control, because the elimination of dysglycemic states in the CNS abolishes the fundamental mechanisms that induce this vicious cycle.


Subject(s)
Chemokine CX3CL1 , Microglia , Signal Transduction , Humans , Chemokine CX3CL1/metabolism , Animals , Microglia/metabolism , Microglia/pathology , CX3C Chemokine Receptor 1/metabolism
3.
Front Plant Sci ; 15: 1426035, 2024.
Article in English | MEDLINE | ID: mdl-38899156

ABSTRACT

[This corrects the article DOI: 10.3389/fpls.2024.1328966.].

4.
Inflamm Regen ; 44(1): 30, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844990

ABSTRACT

BACKGROUND: The chemokine CX3CL1 has been reported to play an important role in optic nerve protection, but the underlying mechanism is still unclear. CX3CR1, the only receptor of CX3CL1, is specifically expressed on retinal microglia, whose activation plays a role in the pathological process of optic nerve injury. This study aimed to evaluate whether CX3CL1 exerts optic neuroprotection by affecting the activation of microglia by combining with CX3CR1. METHODS: A mouse model of distal optic nerve trauma (ONT) was used to evaluate the effects of the CX3CL1-CX3CR1 axis on the activation of microglia and survival or axonal regeneration of retinal ganglion cells (RGCs). The activation of microglia, loss of RGCs, and damage to visual function were detected weekly till 4 weeks after modeling. CX3CL1 was injected intravitreally immediately or delayed after injury and the status of microglia and RGCs were examined. RESULTS: Increases in microglia activation and optic nerve damage were accompanied by a reduced production of the CX3CL1-CX3CR1 axis after the distal ONT modeling. Both immediate and delayed intravitreal injection of CX3CL1 inhibited microglia activation, promoted survival of RGCs, and improved axonal regenerative capacity. Injection with CX3CL1 was no longer effective after 48 h post ONT. The CX3CL1-CX3CR1 axis promotes survival and axonal regeneration, as indicated by GAP43 protein and gene expression, of RGCs by inhibiting the microglial activation after ONT. CONCLUSIONS: The CX3CL1-CX3CR1 axis could promote survival and axonal regeneration of RGCs by inhibiting the microglial activation after optic nerve injury. The CX3CL1-CX3CR1 axis may become a potential target for the treatment of optic nerve injury. Forty-eight hours is the longest time window for effective treatment after injury. The study is expected to provide new ideas for the development of targeted drugs for the repair of optic nerve.

5.
Cells ; 13(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38786041

ABSTRACT

Monocytes, as well as downstream macrophages and dendritic cells, are essential players in the immune system, fulfilling key roles in homeostasis as well as in inflammatory conditions. Conventionally, driven by studies on reporter models, mouse monocytes are categorized into a classical and a non-classical subset based on their inversely correlated surface expression of Ly6C/CCR2 and CX3CR1. Here, we aimed to challenge this concept by antibody staining and reporter mouse models. Therefore, we took advantage of Cx3cr1GFP and Ccr2RFP reporter mice, in which the respective gene was replaced by a fluorescent reporter protein gene. We analyzed the expression of CX3CR1 and CCR2 by flow cytometry using several validated fluorochrome-coupled antibodies and compared them with the reporter gene signal in these reporter mouse strains. Although we were able to validate the specificity of the fluorochrome-coupled flow cytometry antibodies, mouse Ly6Chigh classical and Ly6Clow non-classical monocytes showed no differences in CX3CR1 expression levels in the peripheral blood and spleen when stained with these antibodies. On the contrary, in Cx3cr1GFP reporter mice, we were able to reproduce the inverse correlation of the CX3CR1 reporter gene signal and Ly6C surface expression. Furthermore, differential CCR2 surface expression correlating with the expression of Ly6C was observed by antibody staining, but not in Ccr2RFP reporter mice. In conclusion, our data suggest that phenotyping strategies for mouse monocyte subsets should be carefully selected. In accordance with the literature, the suitability of CX3CR1 antibody staining is limited, whereas for CCR2, caution should be applied when using reporter mice.


Subject(s)
CX3C Chemokine Receptor 1 , Flow Cytometry , Monocytes , Receptors, CCR2 , Animals , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Monocytes/metabolism , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , Mice , Antibodies/immunology , Genes, Reporter , Phenotype , Mice, Inbred C57BL , Mice, Transgenic , Green Fluorescent Proteins/metabolism , Antigens, Ly/metabolism , Antigens, Ly/genetics
6.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731899

ABSTRACT

The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.


Subject(s)
CX3C Chemokine Receptor 1 , Carcinogenesis , Chemokine CX3CL1 , Inflammation , Neovascularization, Pathologic , Signal Transduction , Humans , Chemokine CX3CL1/metabolism , Neovascularization, Pathologic/metabolism , Inflammation/metabolism , Inflammation/pathology , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/etiology , Tumor Microenvironment , Angiogenesis
7.
Front Plant Sci ; 15: 1328966, 2024.
Article in English | MEDLINE | ID: mdl-38550287

ABSTRACT

Extensive research has focused on exploring the range of genome sizes in eukaryotes, with a particular emphasis on land plants, where significant variability has been observed. Accurate estimation of genome size is essential for various research purposes, but existing sequence-based methods have limitations, particularly for low-coverage datasets. In this study, we introduce LocoGSE, a novel genome size estimator designed specifically for low-coverage datasets generated by genome skimming approaches. LocoGSE relies on mapping the reads on single copy consensus proteins without the need for a reference genome assembly. We calibrated LocoGSE using 430 low-coverage Angiosperm genome skimming datasets and compared its performance against other estimators. Our results demonstrate that LocoGSE accurately predicts monoploid genome size even at very low depth of coverage (<1X) and on highly heterozygous samples. Additionally, LocoGSE provides stable estimates across individuals with varying ploidy levels. LocoGSE fills a gap in sequence-based plant genome size estimation by offering a user-friendly and reliable tool that does not rely on high coverage or reference assemblies. We anticipate that LocoGSE will facilitate plant genome size analysis and contribute to evolutionary and ecological studies in the field. Furthermore, at the cost of an initial calibration, LocoGSE can be used in other lineages.

8.
J Cell Biochem ; 125(1): 127-145, 2024 01.
Article in English | MEDLINE | ID: mdl-38112285

ABSTRACT

Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases employing abnormal levels of insulin. Enhancing the insulin production is greatly aided by the regulatory mechanisms of the Fractalkine receptor (CX3CR1) system in islet ß-cell function. However, elements including a high-fat diet, obesity, and ageing negatively impact the expression of CX3CR1 in islets. CX3CL1/CX3CR1 receptor-ligand complex is now recognized as a novel therapeutic target. It suggests that T2DM-related ß-cell dysfunction may result from lower amount of these proteins. We analyzed the differential expression of CX3CR1 gene samples taken from persons with T2DM using data obtained from the Gene Expression Omnibus database. Homology modeling enabled us to generate the three-dimensional structure of CX3CR1 and a possible binding pocket. The optimized CX3CR1 structure was subjected to rigorous screening against a massive library of 693 million drug-like molecules from the ZINC15 database. This screening process led to the identification of three compounds with strong binding affinity at the identified binding pocket of CX3CR1. To further evaluate the potential of these compounds, molecular dynamics simulations were conducted over a 50 ns time scale to assess the stability of the protein-ligand complexes. These simulations revealed that ZINC000032506419 emerged as the most promising drug-like compound among the three potent molecules. The discovery of ZINC000032506419 holds exciting promise as a potential therapeutic agent for T2D and other related metabolic disorders. These findings pave the way for the development of effective medications to address the complexities of T2DM and its associated metabolic diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Chemokine CX3CL1/genetics , Chemokine CX3CL1/metabolism , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Drug Discovery , Insulin , Ligands
9.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5822-5829, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114178

ABSTRACT

Based on the CX3C chemokine ligand 1(CX3CL1)-CX3C chemokine receptor 1(CX3CR1) axis, this study explored the potential mechanism by which Zuogui Jiangtang Jieyu Formula(ZGJTJY) improved neuroinflammation and enhanced neuroprotective effect in a rat model of diabetes mellitus complicated with depression(DD). The DD rat model was established by feeding a high-fat diet combined with streptozotocin(STZ) intraperitoneal injection for four weeks and chronic unpredictable mild stress(CUMS) combined with isolated cage rearing for five weeks. The rats were divided into a control group, a model group, a positive control group, an inhibitor group, and a ZGJTJY group. The open field test and forced swimming test were used to assess the depression-like behaviors of the rats. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the expression levels of the pro-inflammatory cytokines interleukin-1ß(IL-1ß) and tumor necrosis factor-α(TNF-α) in plasma. Immunofluorescence staining was used to detect the expression of ionized calcium-binding adapter molecule 1(Iba1), postsynaptic density protein-95(PSD95), and synapsin-1(SYN1) in the hippocampus. Hematoxylin-eosin(HE) staining, Nissl staining, and TdT-mediated dUTP nick end labeling(TUNEL) fluorescence staining were performed to assess hippocampal neuronal damage. Western blot was used to measure the expression levels of CX3CL1, CX3CR1, A2A adenosine receptor(A2AR), glutamate receptor 2A(NR2A), glutamate receptor 2B(NR2B), and brain-derived neurotrophic factor(BDNF) in the hippocampus. Compared with the model group, the ZGJTJY group showed improved depression-like behaviors in DD rats, enhanced neuroprotective effect, increased expression of PSD95, SYN1, and BDNF(P<0.01), and decreased expression of Iba1, IL-1ß, and TNF-α(P<0.01), as well as the expression of CX3CL1, CX3CR1, A2AR, NR2A, and NR2B(P<0.01). These results suggest that ZGJTJY may exert its neuroprotective effect by inhibiting the CX3CL1-CX3CR1 axis and activation of hippocampal microglia, thereby improving neuroinflammation and abnormal activation of N-methyl-D-aspartate receptor(NMDAR) subunits, and ultimately enhancing the expression of synaptic-related proteins PSD95, SYN1, and BDNF in the hippocampus.


Subject(s)
Diabetes Mellitus , Neuroprotective Agents , Rats , Animals , Depression/drug therapy , Brain-Derived Neurotrophic Factor , Tumor Necrosis Factor-alpha/metabolism , Neuroinflammatory Diseases , Receptors, Glutamate , CX3C Chemokine Receptor 1/genetics
10.
Cell Signal ; 111: 110873, 2023 11.
Article in English | MEDLINE | ID: mdl-37640194

ABSTRACT

BACKGROUND: Nocturnal hypoxemia is an established factor in the pathogenesis and exacerbation of term metabolic (dysfunction) associated fatty liver disease (MAFLD). Kupffer cells (KCs) are resident macrophages in the liver, and their activity is closely related to the progress of MAFLD. KC insufficient autophagy is involved in MAFLD pathogenesis. Herein, the regulatory mechanism of KC autophagy under chronic intermittent hypoxia (CIH) condition was investigated. METHODS: Primary KCs and hepatic stellate cells (HSCs) were isolated from mouse liver. Immunofluorescence was employed to detect immunofluorescence intensity of LC3 protein and HDAC4 distribution. KC apoptosis was measured by TUNEL staining. Dual-luciferase reporter and ChIP assays were performed to analyze the interactions between HDAC4, MEF2C and RUBCN. RESULTS: Herein, our results revealed that CIH-induced increased CX3CL1 in HSCs inhibited KC autophagy and promoted cell apoptosis by interacting with CX3CR1. Meanwhile, CX3CL1 treatment inhibited KC autophagy (p < 0.001, fold change: 0.059) and promoted cell apoptosis (p < 0.001, fold change: 8.18). Rubicon knockdown promoted KC autophagy (p < 0.001, fold change: 2.90) and inhibited cell apoptosis (p < 0.05, fold change: 0.23), while these effects were reversed by CX3CL1 treatment (p < 0.01, fold change: 6.59; p < 0.001, fold change: 0.35). Our mechanistic experiments demonstrated that HDAC4 overexpression transcriptionally inhibited RUBCN expression by interacting with MEF2C, thereby promoting KC autophagy and inhibiting cell apoptosis. Moreover, CaMKIIδ inhibition promoted the translocation of HDAC4 from the cytosol to the nucleus to promote KC autophagy and inhibit the apoptosis. CONCLUSION: Taken together, CIH-induced increased CX3CL1 expression in HSCs inhibited KC autophagy and promoted apoptosis by regulating the CX3CR1/ CaMKIIδ/HDAC4/Rubicon axis.


Subject(s)
Apoptosis , Kupffer Cells , Animals , Mice , Autophagy , Hepatic Stellate Cells , Hypoxia
11.
Front Cell Neurosci ; 17: 1189348, 2023.
Article in English | MEDLINE | ID: mdl-37234914

ABSTRACT

Introduction: Hypoxia-induced neuronal damage is the primary cause of cognitive impairment induced by high-altitude exposure. Microglia play a crucial regulatory role in the central nervous system (CNS) homeostasis and synaptic plasticity. M1-type polarized microglia are suspected to be responsible for CNS injury under hypoxic conditions, but the exact molecular mechanism is still unelucidated. Methods: CX3CR1 knock out and wide type mice were exposed to a simulated plateau at 7000 m for 48 h to construct the model of hypobaric hypoxia-induced memory impairment. The memory impairment of mice was assessed by Morris water maze. The dendritic spine density in the hippocampus was examined by Golgi staining. The synapses in the CA1 region and the number of neurons in the DG region were examined by immunofluorescence staining. The synapses in microglia activation and phagocytosis were examined by immunofluorescence. The levels of CX3CL1/CX3CR1 and their downstream proteins were detected. CX3CR1 knockout primary microglia were treated with CX3CL1 combined with 1% O2. The levels of proteins related to microglial polarization, the uptake of synaptosome and phagocytotic ability of microglia were detected. Results: In this study, mice exposed to a simulated 7000 m altitude for 48 h developed significant amnesia for recent memories, but no significant change in their anxiety levels was observed. Hypobaric hypoxia exposure (7000 m altitude above sea level for 48 h) resulted in synapse loss in the CA1 region of the hippocampus, but no significant changes occurred in the total number of neurons. Meanwhile, microglia activation, increased phagocytosis of synapses by microglia, and CX3CL1/CX3CR1 signal activation were observed under hypobaric hypoxic exposure. Further, we found that after hypobaric hypoxia exposure, CX3CR1-deficient mice showed less amnesia, less synaptic loss in the CA1 region, and less increase in M1 microglia, compared to their wildtype siblings. CX3CR1-deficient microglia did not exhibit M1-type polarization in response to either hypoxia or CX3CL1 induction. Both hypoxia and CX3CL1 induced the phagocytosis of synapses by microglia through the upregulation of microglial phagocytosis. Discussion: The current study demonstrates that CX3CL1/CX3CR1 signal mediates the M1-type polarization of microglia under high-altitude exposure and upregulates microglial phagocytosis, which increases the phagocytosis of synapses in the CA1 region of the hippocampus, causing synaptic loss and inducing forgetting.

12.
Phytomedicine ; 115: 154828, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37116386

ABSTRACT

BACKGROUND: Retinitis pigmentosa (RP) refers to a group of progressive photoreceptor degenerative diseases. The activation of microglia has been reported to play an important role in the photoreceptor degeneration in RP retinal. Bujing Yishi tablets (BJYS), a Chinese herbal medicine, has been used to treat retinal diseases in China with desirable effect in improving visual function. However, the mechanisms underlying the efficacy of BJYS treatment in RP are not yet fully understood. PURPOSE: Based on the preliminary experiments, this study aimed to investigate the therapeutic mechanism involved in treating N-Methyl-N-Nitrosourea (MNU)-induced retinal degeneration of RP with BJYS. METHODS: To explore the efficacy of BJYS, a rat experimental RP model was established through intraperitoneal injection of MNU (50 mg/kg). Two experiment was carried out. After the treatment, we conducted H&E, TUNEL, retinal cytokine levels and IBA-1 expression in microglia to confirm the impact on RP model. The specific mechanism of action of BJYS tablet was assessed by western blot, real-time polymerase chain reaction (RT-PCR), and immunofluorescence to determine the mRNA and protein expression levels involved in clarifying the effectiveness of BJYS exerted through P2X7R/CX3CL1/CX3CR1 pathway. RESULTS: Significant alleviation of retinal morphological structure and photoreceptor degeneration by BJYS treatment was observed in the retinal of MNU-induced RP rats, BJYS prevented the reduction of ONL thickness and decreased the level of apoptotic cells in ONL. It also inhibited microglia overactivation and reduced retinal levels of IL-1ß, IL-6, TNF-α. In addition, BJYS decreased the protein expression and mRNA expression of P2X7, CX3CL1 and CX3CR1 and reduced the phosphorylation of p38 MAPK. CONCLUSION: In summary, this study suggested that BJYS treatment could alleviate photoreceptors degeneration of RP by inhibiting microglia overactivation and inflammation through the P2X7R/CX3CL1/CX3CR1 pathway. These effects suggest that BJYS tablets may serve as a promising oral therapeutic agent for RP.


Subject(s)
Retinal Degeneration , Retinitis Pigmentosa , Rats , Animals , Retinitis Pigmentosa/drug therapy , Retinitis Pigmentosa/metabolism , Photoreceptor Cells/metabolism , Retina , Retinal Degeneration/chemically induced , Cell Death , Nitrosourea Compounds/adverse effects , Nitrosourea Compounds/metabolism , Apoptosis , Disease Models, Animal , Chemokine CX3CL1/adverse effects , Chemokine CX3CL1/metabolism , CX3C Chemokine Receptor 1/metabolism
13.
Neuropharmacology ; 228: 109456, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36796675

ABSTRACT

Following insults or injury, microglia cells are activated contributing to the cytotoxic response or by promoting an immune-mediated damage resolution. Microglia cells express HCA2R, a hydroxy carboxylic acid (HCA) receptor, which has been shown to mediate neuroprotective and anti-inflammatory effects. In this study we found that HCAR2 expression levels were increased in cultured rat microglia cells after Lipopolysaccharide (LPS) exposure. In a similar fashion, the treatment with MK 1903, a potent full agonist of HCAR2, increased the receptor protein levels. Moreover, HCAR2 stimulation prevented i) cells viability ii) morphological activation iii) pro/anti-inflammatory mediators production in LPS-treated cells. Likewise, HCAR2 stimulation reduced the proinflammatory mediators mRNA expression induced by neuronal chemokine fractalkine (FKN), a neuronal derived chemokine activating its unique receptor, chemokine receptor 1 (CX3CR1) on microglia surface. Interestingly, electrophysiological recordings in vivo revealed that MK1903 was able to prevent the increase of the nociceptive neurons (NS) firing activity mediated by the spinal FKN application in healthy rats. Collectively, our data demonstrate that HCAR2 is functionally expressed in microglia, by showing its capability to shift microglia toward an anti-inflammatory phenotype. Moreover, we indicated the contribute of HCAR2 in the FKN signaling and suggested a possible HCAR2/CX3CR1 functional interaction. This study paves the way for further investigations aimed at understanding the role HCAR2 as potential target in neuroinflammation-based CNS disorders. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".


Subject(s)
Chemokines, CXC , Microglia , Rats , Animals , Chemokines, CXC/metabolism , Chemokines, CXC/pharmacology , Lipopolysaccharides/pharmacology , CX3C Chemokine Receptor 1/metabolism , Chemokine CX3CL1/metabolism , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism
14.
Int J Rheum Dis ; 26(4): 648-656, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36807869

ABSTRACT

AIM: To verify the role of CX3C chemokine ligand 1 - CX3C chemokine receptor 1 (CX3CL1-CX3CR1) pathway in the pathogenesis of primary biliary cholangitis (PBC). To explore whether CCL26, a novel functional ligand to CX3CR1, participates in the immunological mechanism of PBC. METHODS: Fifty-nine PBC patients and 54 healthy controls were recruited. Enzyme-linked immunosorbent assay and flow cytometry were used to measure CX3CL1 and CCL26 concentrations in plasma and CX3CR1 expression on peripheral lymphocytes, respectively. Chemotactic effects of CX3CL1 and CCL26 toward lymphocytes were detected by Transwell cell migration assays. CX3CL1 and CCL26 expressions in liver were assessed by immunohistochemical staining. Effects of CX3CL1 and CCL26 on stimulating cytokine production from lymphocytes were evaluated using intracellular flow cytometry. RESULTS: Significantly elevated CX3CL1 and CCL26 plasma concentration and CX3CR1 expression on CD4+ and CD8+ T cells were noted in PBC patients. CX3CL1 exhibited chemotactic activity toward CD8+ T, natural killer (NK) and NKT cells in a dose-dependent manner while such chemotactic effects were not detected for CCL26. In PBC patients, CX3CL1 and CCL26 were both increasingly expressed in biliary tracts and a concentration gradient of CCL26 in hepatocytes around portal areas was observed. Immobilized CX3CL1 could enhance interferon-γ production from T and NK cells while such effect was not exhibited by soluble CX3CL1 or CCL26. CONCLUSIONS: CCL26 expression is significantly elevated in plasma and biliary duct of PBC patients, yet does not appear to attract CX3CR1-expressing immune cells. CX3CL1-CX3CR1 pathway promotes the infiltration of T, NK and NKT cells into bile ducts and forms a positive feedback loop with T-helper 1 type cytokines in PBC.


Subject(s)
CD8-Positive T-Lymphocytes , Liver Cirrhosis, Biliary , Humans , Liver Cirrhosis, Biliary/diagnosis , Ligands , Killer Cells, Natural , Cytokines/metabolism , Receptors, Chemokine/metabolism , Chemokine CCL26/metabolism
15.
Biomedicines ; 11(2)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36831001

ABSTRACT

Allocryptopine (ALL) is an isoquinoline alkaloid extracted from Macleaya cordata(Willd). R. Br., which has been claimed to have anti-inflammatory and neuroprotection properties. However, the mechanism by which ALL ameliorates inflammatory bowel disease (IBD) remains unclear. Here, we used network pharmacology and quantitative proteomic approaches to investigate the effect of ALL on IBD pathogenesis. Network pharmacology predicted potential targets and signaling pathways of ALL's anti-IBD effects. As predicted by network pharmacology, gene ontology (GO) analysis, in terms of the proteomic results, showed that the immune response in mucosa and antimicrobial humoral response were enriched. Further study revealed that the ALL-related pathways were the chemokine signaling pathway and apoptosis in the Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, we identified AKT1 as a hub for the critical pathways through protein-protein interaction (PPI) network analysis. Similar to mesalazine (MES), Western blot verified that ALL downregulated upstream chemokine CX3CL1 and GNB5 content to reduce phosphorylation of AKT and NF-κB, as well as the degree of apoptosis, to improve inflammatory response in the colon. Our research may shed light on the mechanism by which ALL inhibits the CX3CL1/GNB5/AKT2/NF-κB/apoptosis pathway and improves the intestinal barrier to reduce colitis response and act on the CX3CL1-CX3CR1 axis to achieve neuroprotection.

16.
Int J Mol Sci ; 24(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36675275

ABSTRACT

Central neuropathic pain is not only characterized by reflexive pain responses, but also emotional or affective nonreflexive pain responses, especially in women. Some pieces of evidence suggest that the activation of the neuroimmune system may be contributing to the manifestation of mood disorders in patients with chronic pain conditions, but the mechanisms that contribute to the development and chronicity of CNP and its associated disorders remain poorly understood. This study aimed to determine whether neuroinflammatory factor over-expression in the spinal cord and supraspinal structures may be associated with reflexive and nonreflexive pain response development from acute SCI phase to 12 weeks post-injury in female mice. The results show that transient reflexive responses were observed during the SCI acute phase associated with transient cytokine overexpression in the spinal cord. In contrast, increased nonreflexive pain responses were observed in the chronic phase associated with cytokine overexpression in supraspinal structures, especially in mPFC. In addition, results revealed that besides cytokines, the mPFC showed an increased glial activation as well as CX3CL1/CX3CR1 upregulation in the neurons, suggesting the contribution of neuron-glia crosstalk in the development of nonreflexive pain responses in the chronic spinal cord injury phase.


Subject(s)
Neuralgia , Spinal Cord Injuries , Female , Mice , Animals , Neuroinflammatory Diseases , Spinal Cord , Neuralgia/complications , Neuroglia , Spinal Cord Injuries/complications
17.
Phytother Res ; 37(5): 1823-1838, 2023 May.
Article in English | MEDLINE | ID: mdl-36581492

ABSTRACT

Total saponins of Panax ginseng (TSPG) have antidepressant effects. However, the underlying antidepressant mechanism of TSPG remains not clear. This study aimed to predict the mechanism of TSPG by bioinformatics analysis and to verify it experimentally. Bioinformatics analysis showed that the antidepressant effects of TSPG may be related to inflammation, and CX3CL1/CX3CR1 may play a key mediating role. Wistar rats were exposed to chronic unpredictable mild stress (CUMS) for 6 weeks, and TSPG (50 mg/kg/d, 100 mg/kg/d) was administered throughout the modeling period. It was found that TSPG improves depressive behavior and reduces neuropathic damage in the hippocampus in rats. Meanwhile, TSPG decreased mRNA and protein expression of pro-inflammatory cytokines and CX3CL1/CX3CR1 and inhibited P38 and JNK protein phosphorylation in the hippocampus. Rat astrocytes were employed to explore further the potential mechanism of TSPG in regulating CX3CL1/CX3CR1. The results showed that CX3CL1 small interfering RNA (siRNA-CX3CL1) and CX3CR1 inhibitor (JMS-17-2) had similar effects to TSPG, that is, reduced inflammatory response, reactive oxygen species (ROS), and phosphorylation of P38 and JNK proteins, while overexpression of CX3CL1 (pcDNA-CX3CL1) counteracted the above effects of TSPG. It is suggested that the antidepressant effect of TSPG may be achieved through inhibition of CX3CL1/CX3CR1.


Subject(s)
Panax , Saponins , Rats , Animals , Saponins/pharmacology , Neuroinflammatory Diseases , Panax/metabolism , Rats, Wistar , Cytokines/metabolism , Chemokine CX3CL1 , CX3C Chemokine Receptor 1/metabolism
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008780

ABSTRACT

Based on the CX3C chemokine ligand 1(CX3CL1)-CX3C chemokine receptor 1(CX3CR1) axis, this study explored the potential mechanism by which Zuogui Jiangtang Jieyu Formula(ZGJTJY) improved neuroinflammation and enhanced neuroprotective effect in a rat model of diabetes mellitus complicated with depression(DD). The DD rat model was established by feeding a high-fat diet combined with streptozotocin(STZ) intraperitoneal injection for four weeks and chronic unpredictable mild stress(CUMS) combined with isolated cage rearing for five weeks. The rats were divided into a control group, a model group, a positive control group, an inhibitor group, and a ZGJTJY group. The open field test and forced swimming test were used to assess the depression-like behaviors of the rats. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the expression levels of the pro-inflammatory cytokines interleukin-1β(IL-1β) and tumor necrosis factor-α(TNF-α) in plasma. Immunofluorescence staining was used to detect the expression of ionized calcium-binding adapter molecule 1(Iba1), postsynaptic density protein-95(PSD95), and synapsin-1(SYN1) in the hippocampus. Hematoxylin-eosin(HE) staining, Nissl staining, and TdT-mediated dUTP nick end labeling(TUNEL) fluorescence staining were performed to assess hippocampal neuronal damage. Western blot was used to measure the expression levels of CX3CL1, CX3CR1, A2A adenosine receptor(A2AR), glutamate receptor 2A(NR2A), glutamate receptor 2B(NR2B), and brain-derived neurotrophic factor(BDNF) in the hippocampus. Compared with the model group, the ZGJTJY group showed improved depression-like behaviors in DD rats, enhanced neuroprotective effect, increased expression of PSD95, SYN1, and BDNF(P<0.01), and decreased expression of Iba1, IL-1β, and TNF-α(P<0.01), as well as the expression of CX3CL1, CX3CR1, A2AR, NR2A, and NR2B(P<0.01). These results suggest that ZGJTJY may exert its neuroprotective effect by inhibiting the CX3CL1-CX3CR1 axis and activation of hippocampal microglia, thereby improving neuroinflammation and abnormal activation of N-methyl-D-aspartate receptor(NMDAR) subunits, and ultimately enhancing the expression of synaptic-related proteins PSD95, SYN1, and BDNF in the hippocampus.


Subject(s)
Rats , Animals , Depression/drug therapy , Brain-Derived Neurotrophic Factor , Neuroprotective Agents , Tumor Necrosis Factor-alpha/metabolism , Neuroinflammatory Diseases , Diabetes Mellitus , Receptors, Glutamate , CX3C Chemokine Receptor 1/genetics
19.
J Neuroinflammation ; 19(1): 292, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482444

ABSTRACT

The hippocampus is a plastic brain area that shows functional segregation along its longitudinal axis, reflected by a higher level of long-term potentiation (LTP) in the CA1 region of the dorsal hippocampus (DH) compared to the ventral hippocampus (VH), but the mechanisms underlying this difference remain elusive. Numerous studies have highlighted the importance of microglia-neuronal communication in modulating synaptic transmission and hippocampal plasticity, although its role in physiological contexts is still largely unknown. We characterized in depth the features of microglia in the two hippocampal poles and investigated their contribution to CA1 plasticity under physiological conditions. We unveiled the influence of microglia in differentially modulating the amplitude of LTP in the DH and VH, showing that minocycline or PLX5622 treatment reduced LTP amplitude in the DH, while increasing it in the VH. This was recapitulated in Cx3cr1 knockout mice, indicating that microglia have a key role in setting the conditions for plasticity processes in a region-specific manner, and that the CX3CL1-CX3CR1 pathway is a key element in determining the basal level of CA1 LTP in the two regions. The observed LTP differences at the two poles were associated with transcriptional changes in the expression of genes encoding for Il-1, Tnf-α, Il-6, and Bdnf, essential players of neuronal plasticity. Furthermore, microglia in the CA1 SR region showed an increase in soma and a more extensive arborization, an increased prevalence of immature lysosomes accompanied by an elevation in mRNA expression of phagocytic markers Mertk and Cd68 and a surge in the expression of microglial outward K+ currents in the VH compared to DH, suggesting a distinct basal phenotypic state of microglia across the two hippocampal poles. Overall, we characterized the molecular, morphological, ultrastructural, and functional profile of microglia at the two poles, suggesting that modifications in hippocampal subregions related to different microglial statuses can contribute to dissect the phenotypical aspects of many diseases in which microglia are known to be involved.


Subject(s)
Neuronal Plasticity , Male , Animals , Mice
20.
Front Mol Neurosci ; 15: 1031278, 2022.
Article in English | MEDLINE | ID: mdl-36518186

ABSTRACT

Cochlear ribbon synapses formed between spiral ganglion neurons and inner hair cells in postnatal mice must undergo significant morphological and functional development to reach auditory maturation. However, the mechanisms underlying cochlear ribbon synapse remodeling remain unclear. This study found that cochlear resident macrophages are essential for cochlear ribbon synapse development and maturation in mice via the CX3CR1/CX3CL1 axis. CX3CR1 expression (a macrophage surface-specific receptor) and macrophage count in the cochlea were significantly increased from postnatal day 7 then decreased from days 14 to 28. Seven-day treatment with CX3CR1 inhibitors and artificial upregulation of CX3CL1 levels in the inner ear environment using the semicircular canal injection technique were initiated on day 7, and this resulted in a significant increase in hearing threshold on day 28. Additionally, abnormalities in the morphology and number of cochlear ribbon synapses were detected on day P14, which may be associated with hearing impairment. In conclusion, macrophage regulation of cochlear ribbon synapse remodeling via the CX3CR1/CX3CL1 axis is required during hearing development and offers a new perspective on immune-related hearing loss throughout auditory development. Importantly, it could be a new treatment target for sensorineural hearing loss.

SELECTION OF CITATIONS
SEARCH DETAIL