Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Neurodev Disord ; 16(1): 57, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39363263

ABSTRACT

BACKGROUND: Phelan-McDermid syndrome (PMS) is caused by monoallelic loss or inactivation at the SHANK3 gene, located in human chr 22q13.33, and is often associated with Autism Spectrum Disorder (ASD). OBJECTIVES: To assess the clinical and developmental phenotype in a novel sample of PMS patients, including for the first time auxometric trajectories and serotonin blood levels. METHODS: 70 Italian PMS patients were clinically characterized by parental report, direct medical observation, and a thorough medical and psychodiagnostic protocol. Serotonin levels were measured in platelet-rich plasma by HPLC. RESULTS: Our sample includes 59 (84.3%) cases with chr. 22q13 terminal deletion, 5 (7.1%) disruptive SHANK3 mutations, and 6 (8.6%) ring chromosome 22. Intellectual disability was present in 69 (98.6%) cases, motor coordination disorder in 65 (92.9%), ASD in 20 (28.6%), and lifetime bipolar disorder in 12 (17.1%). Prenatal and postnatal complications were frequent (22.9%-48.6%). Expressive and receptive language were absent in 49 (70.0%) and 19 (27.1%) cases, respectively. Decreased pain sensitivity was reported in 56 (80.0%), hyperactivity in 49 (80.3%), abnormal sleep in 45 (64.3%), congenital dysmorphisms in 35 (58.3%), chronic stool abnormalities and especially constipation in 29 (41.4%). Parents reported noticing behavioral abnormalities during early childhood immediately after an infective episode in 34 (48.6%) patients. Brain MRI anomalies were observed in 53 (79.1%), EEG abnormalities in 16 (23.5%), kidney and upper urinary tract malformations in 18 (28.1%). Two novel phenotypes emerged: (a) a subgroup of 12/44 (27.3%) PMS patients displays smaller head size at enrollment (mean age 11.8 yrs) compared to their first year of neonatal life, documenting a deceleration of head growth (p < 0.001); (b) serotonin blood levels are significantly lower in 21 PMS patients compared to their 21 unaffected siblings (P < 0.05), and to 432 idiopathic ASD cases (p < 0.001). CONCLUSIONS: We replicate and extend the description of many phenotypic characteristics present in PMS, and report two novel features: (1) growth trajectories are variable and head growth appears to slow down during childhood in some PMS patients; (2) serotonin blood levels are decreased in PMS, and not increased as frequently occurs in ASD. Further investigations of these novel features are under way.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 22 , Phenotype , Humans , Male , Female , Italy , Child , Chromosomes, Human, Pair 22/genetics , Adolescent , Child, Preschool , Adult , Young Adult , Chromosome Disorders/physiopathology , Chromosome Disorders/complications , Chromosome Disorders/blood , Autism Spectrum Disorder/blood , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/complications , Nerve Tissue Proteins/blood , Nerve Tissue Proteins/genetics , Intellectual Disability/etiology , Intellectual Disability/blood
2.
Genes (Basel) ; 14(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-38002941

ABSTRACT

Phelan-McDermid syndrome (PMS) is a rare genetic neurodevelopmental disorder caused by 22q13 region deletions or SHANK3 gene variants. Deletions vary in size and can affect other genes in addition to SHANK3. PMS is characterized by autism spectrum disorder (ASD), intellectual disability (ID), developmental delays, seizures, speech delay, hypotonia, and minor dysmorphic features. It is challenging to determine individual gene contributions due to variability in deletion sizes and clinical features. We implemented a genomic data mining approach for identifying and prioritizing the candidate genes in the 22q13 region for five phenotypes: ASD, ID, seizures, language impairment, and hypotonia. Weighted gene co-expression networks were constructed using the BrainSpan transcriptome dataset of a human brain. Bioinformatic analyses of the co-expression modules allowed us to select specific candidate genes, including EP300, TCF20, RBX1, XPNPEP3, PMM1, SCO2, BRD1, and SHANK3, for the common neurological phenotypes of PMS. The findings help understand the disease mechanisms and may provide novel therapeutic targets for the precise treatment of PMS.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Intellectual Disability , Language Development Disorders , Humans , Autism Spectrum Disorder/genetics , Muscle Hypotonia/genetics , Intellectual Disability/genetics , Nerve Tissue Proteins/genetics , Brain , Language Development Disorders/genetics , Seizures , Transcription Factors
3.
Clin Genet ; 104(4): 472-478, 2023 10.
Article in English | MEDLINE | ID: mdl-37232218

ABSTRACT

Lymphedema is a troubling condition present in many disorders including the rare genetic disorder known as Phelan-McDermid syndrome (PMS). The neurobehavioral features of PMS, also known as 22q13.3 deletion syndrome, have been investigated, but little research exists on lymphedema in PMS. In this investigation, clinical and genetic data from 404 people with PMS were reviewed from the PMS-International Registry revealing a prevalence of 5% with lymphedema. Lymphedema was reported in 1 out of 47 people (2.1%) with PMS due to a SHANK3 variant and 19 out of 357 people (5.3%) with PMS due to 22q13.3 deletions. Lymphedema was more common among those in their teens or adulthood (p = 0.0011) and those with deletions >4 Mb. People with lymphedema had significantly larger deletions (mean 5.375 Mb) than those without lymphedema (mean 3.464 Mb, p = 0.00496). Association analysis identified a deletion of the CELSR1 gene to be the biggest risk factor (OR = 12.9 95% CI [2.9-56.2]). Detailed assessment of 5 subjects identified all had deletions of CELSR1, developed symptoms of lymphedema starting at age 8 or older, and typically responded well to standard therapy. In conclusion, this is the largest assessment of lymphedema in PMS to date and our results suggest that individuals with deletions >4 Mb or those with CELSR1 deletions should be assessed for lymphedema.


Subject(s)
Chromosome Disorders , Adolescent , Adult , Child , Humans , Cadherins/genetics , Chromosome Deletion , Chromosome Disorders/genetics , Chromosomes, Human, Pair 22 , Nerve Tissue Proteins/genetics
4.
Clin Genet ; 104(2): 198-209, 2023 08.
Article in English | MEDLINE | ID: mdl-37198960

ABSTRACT

Phelan-McDermid Syndrome (PMS) is caused by deletions at chromosome 22q13.3 or pathogenic/likely pathogenic SHANK3 variants. The clinical presentation is extremely variable and includes global developmental delay/intellectual disability (ID), seizures, neonatal hypotonia, and sleep disturbances, among others. This study investigated the prevalence of sleep disturbances, and the genetic and metabolic features associated with them, in a cohort of 56 individuals with PMS. Sleep data were collected via standardized observer/caregiver questionnaires, while genetic data from array-CGH and sequencing of 9 candidate genes within the 22q13.3 region, and metabolic profiling utilized the Biolog Phenotype Mammalian MicroArray plates. Sleep disturbances were present in 64.3% of individuals with PMS, with the most common problem being waking during the night (39%). Sleep disturbances were more prevalent in individuals with a SHANK3 pathogenic variant (89%) compared to subjects with 22q13.3 deletions of any size (59.6%). Distinct metabolic profiles for individuals with PMS with and without sleep disturbances were also identified. These data are helpful information for recognizing and managing sleep disturbances in individuals with PMS, outlining the main candidate gene for this neurological manifestation, and highlighting potential biomarkers for early identification of at-risk subjects and molecular targets for novel treatment approaches.


Subject(s)
Chromosome Disorders , Sleep Wake Disorders , Animals , Humans , Chromosome Disorders/genetics , Chromosome Deletion , Phenotype , Sleep/genetics , Sleep Wake Disorders/complications , Sleep Wake Disorders/genetics , Chromosomes, Human, Pair 22/genetics , Mammals/genetics
5.
Eur J Med Genet ; 66(7): 104754, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37003575

ABSTRACT

Phelan-McDermid syndrome (PMS) is an infrequently described syndrome that presents with a disturbed development, neurological and psychiatric characteristics, and sometimes other comorbidities. As part of the development of European medical guidelines we studied the definition, phenotype, genotype-phenotype characteristics, and natural history of the syndrome. The number of confirmed diagnoses of PMS in different European countries was also assessed and it could be concluded that PMS is underdiagnosed. The incidence of PMS in European countries is estimated to be at least 1 in 30,000. Next generation sequencing, including analysis of copy number variations, as first tier in diagnostics of individuals with intellectual disability will likely yield a larger number of individuals with PMS than presently known. A definition of PMS by its phenotype is at the present not possible, and therefore PMS-SHANK3 related is defined by the presence of SHANK3 haploinsufficiency, either by a deletion involving region 22q13.2-33 or a pathogenic/likely pathogenic variant in SHANK3. In summarizing the phenotype, we subdivided it into that of individuals with a 22q13 deletion and that of those with a pathogenic/likely pathogenic SHANK3 variant. The phenotype of individuals with PMS is variable, depending in part on the deletion size or whether only a variant of SHANK3 is present. The core phenotype in the domains development, neurology, and senses are similar in those with deletions and SHANK3 variants, but individuals with a SHANK3 variant more often are reported to have behavioural disorders and less often urogenital malformations and lymphedema. The behavioural disorders may, however, be a less outstanding feature in individuals with deletions accompanied by more severe intellectual disability. Data available on the natural history are limited. Results of clinical trials using IGF-1, intranasal insulin, and oxytocin are available, other trials are in progress. The present guidelines for PMS aim at offering tools to caregivers and families to provide optimal care to individuals with PMS.


Subject(s)
Chromosome Disorders , Intellectual Disability , Humans , DNA Copy Number Variations , Intellectual Disability/genetics , Intellectual Disability/complications , Nerve Tissue Proteins/genetics , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Chromosome Disorders/pathology , Chromosome Deletion , Phenotype , Syndrome , Chromosomes, Human, Pair 22/genetics
6.
Eur J Med Genet ; 66(5): 104745, 2023 May.
Article in English | MEDLINE | ID: mdl-36871884

ABSTRACT

Phelan-McDermid syndrome is a genetic condition primarily caused by a deletion on the 22q13.3 region or a likely pathogenic/pathogenic variant of SHANK3. The main features comprise global developmental delay, marked impairment or absence of speech, and other clinical characteristics to a variable degree, such as hypotonia or psychiatric comorbidities. A set of clinical guidelines for health professionals covering relevant aspects of clinical management have been written by the European PMS Consortium, and consensus has been reached regarding final recommendations. In this work, attention is given to communication, language and speech impairments in PMS, and the findings from available literature are presented. Findings from the literature review reveal marked speech impairment in up to 88% of deletions and 70% of SHANK3 variants. Absence of speech is frequent and affects 50%-80% of the individuals with PMS. Communicative skills in the expressive domain other than spoken language remain understudied, but some studies offer data on non-verbal language or the use of alternative/augmentative communication support. Loss of language and other developmental skills is reported in around 40% of individuals, with variable course. Deletion size and possibly other clinical variables (e.g., conductive hearing problems, neurological issues, intellectual disability, etc.) are related to communicative and linguistic abilities. Recommendations include regular medical check-ups of hearing and the assessment of other factors influencing communication, thorough evaluation of preverbal and verbal communicative skills, early intervention, and support via alternative/augmentative communication systems.


Subject(s)
Chromosome Disorders , Speech , Humans , Consensus , Phenotype , Chromosome Disorders/genetics , Chromosome Disorders/psychology , Chromosome Deletion , Speech Disorders/genetics , Chromosomes, Human, Pair 22/genetics
7.
Genes (Basel) ; 14(3)2023 02 21.
Article in English | MEDLINE | ID: mdl-36980813

ABSTRACT

Phelan-McDermid syndrome (PMS) is a multisystem disorder that is associated with deletions of the 22q13 genomic region or pathogenic variants in the SHANK3 gene. Notable features include developmental issues, absent or delayed speech, neonatal hypotonia, seizures, autism or autistic traits, gastrointestinal problems, renal abnormalities, dolichocephaly, and both macro- and microcephaly. Assessment of the genetic factors that are responsible for abnormal head size in PMS has been hampered by small sample sizes as well as a lack of attention to these features. Therefore, this study was conducted to investigate the relationship between head size and genes on chromosome 22q13. A review of the literature was conducted to identify published cases of 22q13 deletions with information on head size to conduct a pooled association analysis. Across 56 studies, we identified 198 cases of PMS with defined deletion sizes and head size information. A total of 33 subjects (17%) had macrocephaly, 26 (13%) had microcephaly, and 139 (70%) were normocephalic. Individuals with macrocephaly had significantly larger genomic deletions than those with microcephaly or normocephaly (p < 0.0001). A genomic region on 22q13.31 was found to be significantly associated with macrocephaly with CELSR1, GRAMD4, and TBCD122 suggested as candidate genes. Investigation of these genes will aid the understanding of head and brain development.


Subject(s)
Chromosome Disorders , Microcephaly , Infant, Newborn , Humans , Microcephaly/genetics , Chromosome Disorders/genetics , Chromosome Disorders/pathology , Chromosome Deletion , Chromosome Structures , Mitochondrial Proteins/genetics
8.
Mol Cytogenet ; 15(1): 52, 2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36528601

ABSTRACT

BACKGROUND: Phelan-McDermid syndrome (PHMDS) is a rare genetic disorder mostly caused by haploinsufficincy of SHANK3 gene, and characterized by neonatal hypotonia, developmental delay, minor dysmorphic features, seizures and behavior problems. Literature of this syndrome is scanty and confusing, and represents a challenge for pediatricians, in terms of finding the correct diagnoses. CASE PRESENTATION: In a postnatal case with hypotonia and dysmorphic features a de novo ring chromosome r(22) leading to in parallel microdeletion and micro duplication in 22q13 was diagnosed by banding cytogenetics, and further characterized in detail by molecular cytogenetic and chromosomal microarray. CONCLUSION: Here a rare PHMDS case caused by a r(22) is presented. Less than 10 comparable cases are reported in the literature. The present case highlights the importance of conducting genetic counseling and appropriate genetic tests for newborns with mild dysmorphic features.

9.
Rev. esp. anestesiol. reanim ; 69(9): 587-591, Nov. 2022. tab
Article in Spanish | IBECS | ID: ibc-211682

ABSTRACT

El síndrome de Phelan-McDermid (PMS) es una enfermedad rara del neurodesarrollo, provocada por una mutación autosómica dominante debido a la deleción terminal de 22q13, dando lugar a un defecto en la proteína SHANK3. Presentamos el caso clínico de una paciente de 12 años con este síndrome, sometida a 3 intervenciones que precisaron de anestesia general. En ninguna de ellas presentó complicaciones intra o postoperatorias.(AU)


Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disease, caused by an autosomal dominant mutation due to the terminal deletion of 22q13, leading to a defect in the SHANK3 protein. We present the clinical case of a 12-year-old patient with this syndrome, who underwent three interventions that required general anesthesia. In none of them did she present intraoperative or postoperative complications.(AU)


Subject(s)
Humans , Female , Child , Anesthesia, General , Neurodevelopmental Disorders , Autistic Disorder , Hypnotics and Sedatives , Inpatients , Physical Examination , Rare Diseases , Anesthesiology , Cardiopulmonary Resuscitation , Spain
10.
Rev Esp Anestesiol Reanim (Engl Ed) ; 69(9): 587-591, 2022 11.
Article in English | MEDLINE | ID: mdl-36257878

ABSTRACT

Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disease, caused by an autosomal dominant mutation due to the terminal deletion of 22q13, leading to a defect in the SHANK3 protein. We present the clinical case of a 12-year-old patient with this syndrome, who underwent three interventions that required general anesthesia. In none of them did she present intraoperative or postoperative complications.


Subject(s)
Chromosome Disorders , Hypnotics and Sedatives , Female , Humans , Child , Chromosome Disorders/complications , Chromosome Disorders/genetics , Chromosome Deletion , Syndrome , Anesthesia, General
11.
Front Pediatr ; 10: 888001, 2022.
Article in English | MEDLINE | ID: mdl-36081626

ABSTRACT

Background: PhelanrMcDermid syndrome (PMS) is an uncommon autosomal dominant inherited developmental disorder. The main characteristics are hypotonia, intellectual disability, autism spectrum disorder, autism-like behaviors and tiny facial deformities. Most cases are caused by the deletion of the 22q13 genomic region, including the deletion of SHANK3. Methods: Genetic and phenotype evaluations of ten Chinese pediatric patients were performed. The clinical phenotypes and genetic testing results were collected statistically. We analyzed the deletion of the 22q13 genomic region and small mutations in SHANK3 (GRCh37/hg19) and performed parental genotype verification to determine whether it was related to the parents or was a novel mutation. Results: The age of the patients diagnosed with PMS ranged from 0 to 12 years old. Nine of the pediatric patients experienced Intellectual Disability, language motion development delay and hypotonia as prominent clinical features. One subject had autism, two subjects had abnormal electroencephalogram discharge and one subject was aborted after fetal diagnosis. Three patients had a SHANK3 mutation or deletion. All but the aborted fetuses had intellectual disability. Among the ten patients, a deletion in the 22q13 region occurred in seven patients, with the smallest being 60.6 kb and the largest being >5.5 Mb. Three patients had heterozygous mutations in the SHANK3 gene. Conclusion: All ten patients had novel mutations, and three of these were missense or frameshift mutations. For the first time reported, it is predicted that the amino acid termination code may appear before protein synthesis. The novel mutations we discovered provide a reference for clinical research and the diagnosis of PMS.

12.
Mol Genet Genomic Med ; 10(10): e2035, 2022 10.
Article in English | MEDLINE | ID: mdl-35996993

ABSTRACT

BACKGROUND: Sleep is essential to maintaining a healthy life. Sleep disturbances among individuals with neurodevelopmental disorders are not well studied, affecting their early detection and treatment. Sleep disturbances in individuals with Phelan-McDermid Syndrome (PMS) are among the primary concerns reported by parents. However, little research has been aimed at addressing their concern. METHODS: The purpose of this investigation was to identify and quantify specific sleep disturbances in people with PMS by analyzing data collected by the PMS Foundation International Registry. RESULTS: The registry shows that 284 out of 384 (73.4%) individuals with confirmed chromosome 22q13 deletions or SHANK3 pathogenic variants have a sleep disturbance. The prevalence of sleep disturbances increases with age with 56% reporting a sleep disturbance in the 0-3 year age group and 90% reporting these disturbances in those over age 18 years old. The primary sleep disturbances were circadian rhythm sleep disorders that included difficulty falling asleep, frequent nighttime awakenings, difficulty returning to sleep after a nighttime awakening event, and hypersomnia and parasomnias including enuresis, night terrors, sleepwalking, and sleep apnea. Sleep disturbances were similarly frequent among individuals with SHANK3 pathogenic variants (84.8%) and those with deletions (71.9%), supporting the role of haploinsufficiency of SHANK3 in sleep. CONCLUSION: Sleep disturbances are a common feature of PMS and should be considered in clinical evaluation and management because of the effect they have on the quality of life of the patients and their families.


Subject(s)
Chromosome Disorders , Quality of Life , Child, Preschool , Chromosome Deletion , Chromosome Disorders/diagnosis , Chromosome Disorders/epidemiology , Chromosome Disorders/genetics , Chromosomes, Human, Pair 22 , Humans , Infant , Infant, Newborn , Registries , Sleep/genetics
13.
Front Psychiatry ; 13: 836807, 2022.
Article in English | MEDLINE | ID: mdl-35693963

ABSTRACT

Background: Phelan-McDermid syndrome (PMS) or 22q13.3 deletion syndrome is a rare genetic disorder characterized by developmental delay, hypotonia and severely delayed speech. Behavioral difficulties are often reported in PMS, although knowledge of behavioral profiles and the interpretation of reported behavior remains limited. Understanding the meaning of behavior requires considering the context as well as other domains of functioning, for example the individual's level of cognitive, social and emotional development. Combining structured direct in-person neurodevelopmental assessments with contextual assessments to enable meaningful interpretations of reported behavior on functional dimensions across multiple units of analysis, as proposed by the RDoc framework, is essential. Methods: In this article we present a structured multidisciplinary method of assessment through direct in-person neurodevelopmental assessments and assessment of contextual factors. Our study sample includes data of 33 children with an average age of 6.2 years (range 1.1 to 15.7) with PMS, obtained through individual in-person assessments in combination with parent informed questionnaires. We assessed developmental age using the Bayley-III, adaptive behavior was assessed with the Vineland screener, social-emotional development with the ESSEON-R and behavior by using the CBCL. Results: Our results show a great deal of variability in phenotypic presentation with regard to behavior, symptom expression and symptom severity in individuals with PMS. The data on behavior is interpreted in the context of the individual's level of cognitive, adaptive development and the (genetic) context. Behavioral data showed high levels of withdrawn behavior and attention problems. More than half of the children showed borderline or clinical symptoms related to Autism Spectrum Disorder (ASD). Conclusions: The interpretation of the meaning of certain behavior in PMS is often based on questionnaires and descriptions without taking the specific context of development into account. Combining questionnaires with direct in-person assessments measuring different domains of functioning should be considered a more accurate method to interpret the meaning of findings in order to understand behavior in rare genetic disorders associated with developmental delay such as PMS. Direct in-person assessment provides valuable and specific information relevant to understanding individual behavior and inform treatment as well as increase knowledge of the neurodevelopmental phenotype in individuals with PMS. More specific application of the proposed frameworks on behavior in PMS is desirable in making useful interpretations.

14.
Front Genet ; 13: 652454, 2022.
Article in English | MEDLINE | ID: mdl-35495150

ABSTRACT

Phelan-McDermid syndrome (PMS, OMIM# 606232) results from either different rearrangements at the distal region of the long arm of chromosome 22 (22q13.3) or pathogenic sequence variants in the SHANK3 gene. SHANK3 codes for a structural protein that plays a central role in the formation of the postsynaptic terminals and the maintenance of synaptic structures. Clinically, patients with PMS often present with global developmental delay, absent or severely delayed speech, neonatal hypotonia, minor dysmorphic features, and autism spectrum disorders (ASD), among other findings. Here, we describe a cohort of 210 patients with genetically confirmed PMS. We observed multiple variant types, including a significant number of small deletions (<0.5 Mb, 64/189) and SHANK3 sequence variants (21 cases). We also detected multiple types of rearrangements among microdeletion cases, including a significant number with post-zygotic mosaicism (9.0%, 17/189), ring chromosome 22 (10.6%, 20/189), unbalanced translocations (de novo or inherited, 6.4%), and additional rearrangements at 22q13 (6.3%, 12/189) as well as other copy number variations in other chromosomes, unrelated to 22q deletions (14.8%, 28/189). We compared the clinical and genetic characteristics among patients with different sizes of deletions and with SHANK3 variants. Our findings suggest that SHANK3 plays an important role in this syndrome but is probably not uniquely responsible for all the spectrum features in PMS. We emphasize that only an adequate combination of different molecular and cytogenetic approaches allows an accurate genetic diagnosis in PMS patients. Thus, a diagnostic algorithm is proposed.

15.
Genes (Basel) ; 13(3)2022 03 17.
Article in English | MEDLINE | ID: mdl-35328081

ABSTRACT

Phelan-McDermid syndrome (PMS) is a multi-systemic disorder characterized by both genetic and phenotypic variability. Genetic abnormalities causing PMS span from pathogenic variants of the SHANK3 gene to chromosomal rearrangements affecting the 22q13 region and leading to the loss of up to over nine megabases. The clinical presentation of individuals with PMS includes intellectual disability, neonatal hypotonia, delayed or absent speech, developmental delay, and minor dysmorphic facial features. Several other features may present with differences in age of onset and/or severity: seizures, autism, regression, sleep disorders, gastrointestinal problems, renal disorders, dysplastic toenails, and disrupted thermoregulation. Among the causes of this phenotypic variability, the size of the 22q13 deletion has effects that may be influenced by environmental factors interacting with haploinsufficiency or hemizygous variants of certain genes. Another mechanism linking environmental factors and phenotypic variability in PMS involves the loss of one copy of genes like BRD1 or CYP2D6, located at 22q13 and involved in the regulation of genomic methylation or pharmacokinetics, which are also influenced by external agents, such as diet and drugs. Overall, several non-mutually exclusive genetic and epigenetic mechanisms interact with environmental factors and may contribute to the clinical variability observed in individuals with PMS. Characterization of such factors will help to better manage this disorder.


Subject(s)
Chromosome Disorders , Nerve Tissue Proteins , Biological Variation, Population , Chromosome Deletion , Chromosome Disorders/genetics , Chromosome Disorders/pathology , Chromosomes, Human, Pair 22 , Humans , Infant, Newborn , Nerve Tissue Proteins/genetics
16.
Orphanet J Rare Dis ; 17(1): 27, 2022 01 29.
Article in English | MEDLINE | ID: mdl-35093143

ABSTRACT

Phelan-McDermid syndrome (PMS) was initially called the 22q13 deletion syndrome based on its etiology as a deletion of the distal long arm of chromosome 22. These included terminal and interstitial deletions, as well as other structural rearrangements. Later, pathogenetic variants and deletions of the SHANK3 gene were found to result in a phenotype consistent with PMS. The association between SHANK3 and PMS led investigators to consider disruption/deletion of SHANK3 to be a prerequisite for diagnosing PMS. This narrow definition of PMS based on the involvement of SHANK3 has the adverse effect of causing patients with interstitial deletions of chromosome 22 to "lose" their diagnosis. It also results in underreporting of individuals with interstitial deletions of 22q13 that preserve SHANK3. To reduce the confusion for families, clinicians, researchers, and pharma, a simple classification for PMS has been devised. PMS and will be further classified as PMS-SHANK3 related or PMS-SHANK3 unrelated. PMS can still be used as a general term, but this classification system is inclusive. It allows researchers, regulatory agencies, and other stakeholders to define SHANK3 alterations or interstitial deletions not affecting the SHANK3 coding region.


Subject(s)
Chromosome Disorders , Chromosome Deletion , Chromosome Disorders/genetics , Chromosomes, Human, Pair 22/genetics , Humans , Phenotype
17.
Clin Genet ; 101(1): 87-100, 2022 01.
Article in English | MEDLINE | ID: mdl-34664257

ABSTRACT

Phelan-McDermid syndrome (PMS) (OMIM*606232) is a rare genetic disorder characterized by intellectual disability, autistic features, speech delay, minor dysmorphia, and seizures. This study was conducted to investigate the prevalence of seizures and the association with genetic and metabolic features since there has been little research related to seizures in PMS. For 57 individuals, seizure data was collected from caregiver interviews, genetic data from existing cytogenetic records and Sanger sequencing for nine 22q13 genes, and metabolic profiling from the Phenotype Mammalian MicroArray (PM-M) developed by Biolog. Results showed that 46% of individuals had seizures with the most common type being absence and grand-mal seizures. Seizures were most prevalent in individuals with pathogenic SHANK3 mutations (70%), those with deletion sizes >4 Mb (16%), and those with deletion sizes <4 Mb (71%) suggesting involvement of genes in addition to SHANK3. Additionally, a 3 Mb genomic region on 22q13.31 containing the gene TBC1D22A, was found to be significantly associated with seizure prevalence. A distinct metabolic profile was identified for individuals with PMS with seizures and suggested among other features a disrupted utilization of main energy sources using Biolog plates. The results of this study will be helpful for clinicians and families in anticipating seizures in these children and for researchers to identify candidate genes for the seizure phenotype.


Subject(s)
Chromosome Disorders/genetics , Chromosome Disorders/metabolism , Genetic Association Studies , Genetic Predisposition to Disease , Genomics , Metabolomics , Seizures/etiology , Adolescent , Adult , Child , Child, Preschool , Chromosome Deletion , Chromosome Disorders/diagnosis , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 22/metabolism , Female , Genomics/methods , Humans , Male , Metabolomics/methods , Middle Aged , Seizures/diagnosis , Young Adult
18.
J Neurodev Disord ; 13(1): 53, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34740315

ABSTRACT

BACKGROUND: Phelan McDermid syndrome (PMS) is a neurogenetic condition associated with a high prevalence of intellectual disability (ID) and autism spectrum disorder (ASD). This study provides a more comprehensive and quantitative profile of repetitive behaviors within the context of ID seen with the condition. METHODS: Individuals age 3-21 years with a confirmed PMS diagnosis participated in a multicenter observational study evaluating the phenotype and natural history of the disorder. We evaluated data collected from this study pertaining to repetitive behaviors from the Repetitive Behavior Scales-Revised (RBS-R). RESULTS: There were n = 90 participants who were part of this analysis. Forty-seven percent (n = 42/90) were female, and the average age at baseline evaluation was 8.88 ± 4.72 years. The mean best estimate IQ of the cohort was 26.08 ± 17.67 (range = 3.4-88), with n = 8 with mild ID (or no ID), n = 20 with moderate ID, and n = 62 with severe-profound ID. The RBS-R total overall score was 16.46 ± 13.9 (compared to 33.14 ± 20.60 reported in previous studies of ASD) (Lam and Aman, 2007), and the total number of items endorsed was 10.40 ± 6.81 (range = 0-29). After statistical correction for multiple comparisons, IQ correlated with the RBS-R stereotypic behavior subscale score (rs = - 0.33, unadjusted p = 0.0014, adjusted p = 0.01) and RBS-R stereotypic behavior total number of endorsed items (rs = - 0.32, unadjusted p = 0.0019, adjusted p = 0.01). IQ did not correlate with any other RBS-R subscale scores. CONCLUSIONS: The RBS-R total overall score in a PMS cohort appears milder compared to individuals with ASD characterized in previous studies. Stereotypic behavior in PMS may reflect cognitive functioning.


Subject(s)
Autism Spectrum Disorder , Chromosome Disorders , Autism Spectrum Disorder/psychology , Chromosome Deletion , Chromosome Disorders/complications , Chromosomes, Human, Pair 22 , Cognition , Female , Humans , Parents
19.
J Neurodev Disord ; 13(1): 26, 2021 07 10.
Article in English | MEDLINE | ID: mdl-34246244

ABSTRACT

BACKGROUND: Phelan-McDermid syndrome (PMS) is a rare genetic disorder compromising the 22q13 terminal region and affecting SHANK3, a gene crucial to the neurobehavioural phenotype and strongly linked to autism (ASD) and intellectual disability (ID). The condition is characterised by global developmental delay, ID, speech impairments, hypotonia and autistic behaviours, although its presentation and symptom severity vary widely. In this study, we provide a thorough description of the behavioural profile in PMS and explore differences related to deletion size and language ability. METHODS: We used standard clinical assessment instruments to measure altered behaviour, adaptive skills and autistic symptomatology in sixty participants with PMS (30 females, median age 8.5 years, SD=7.1). We recorded background information and other clinical manifestations and explored associations with deletion size. We performed descriptive and inferential analyses for group comparison. RESULTS: We found delayed gross and fine motor development, delayed and impaired language (~70% of participants non or minimally verbal), ID of different degrees and adaptive functioning ranging from severe to borderline impairment. Approximately 40% of participants experienced developmental regression, and half of those regained skills. Autistic symptoms were frequent and variable in severity, with a median ADOS-2 CSS score of 6 for every domain. Sensory processing anomalies, hyperactivity, attentional problems and medical comorbidities were commonplace. The degree of language and motor development appeared to be associated with deletion size. CONCLUSIONS: This study adds to previous research on the clinical descriptions of PMS and supports results suggesting wide variability of symptom severity and its association with deletion size. It makes the case for suitable psychotherapeutic and pharmacological approaches, for longitudinal studies to strengthen our understanding of possible clinical courses and for more precise genomic analysis.


Subject(s)
Autism Spectrum Disorder , Chromosome Disorders , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/genetics , Child , Chromosome Deletion , Chromosome Disorders/complications , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Chromosomes, Human, Pair 22 , Female , Humans , Phenotype
20.
Mol Autism ; 10: 50, 2019.
Article in English | MEDLINE | ID: mdl-31879555

ABSTRACT

Phelan-McDermid syndrome (PMS) is caused by haploinsufficiency of the SHANK3 gene on chromosome 22q13.33 and is characterized by intellectual disability, hypotonia, severe speech impairments, and autism spectrum disorder. Emerging evidence indicates that there are changes over time in the phenotype observed in individuals with PMS, including severe neuropsychiatric symptoms and loss of skills occurring in adolescence and adulthood. To gain further insight into these phenomena and to better understand the long-term course of the disorder, we conducted a systematic literature review and identified 56 PMS cases showing signs of behavioral and neurologic decompensation in adolescence or adulthood (30 females, 25 males, 1 gender unknown). Clinical presentations included features of bipolar disorder, catatonia, psychosis, and loss of skills, occurring at a mean age of 20 years. There were no apparent sex differences in the rates of these disorders except for catatonia, which appeared to be more frequent in females (13 females, 3 males). Reports of individuals with point mutations in SHANK3 exhibiting neuropsychiatric decompensation and loss of skills demonstrate that loss of one copy of SHANK3 is sufficient to cause these manifestations. In the majority of cases, no apparent cause could be identified; in others, symptoms appeared after acute events, such as infections, prolonged or particularly intense seizures, or changes in the individual's environment. Several individuals had a progressive neurological deterioration, including one with juvenile onset metachromatic leukodystrophy, a severe demyelinating disorder caused by recessive mutations in the ARSA gene in 22q13.33. These reports provide insights into treatment options that have proven helpful in some cases, and are reviewed herein. Our survey highlights how little is currently known about neuropsychiatric presentations and loss of skills in PMS and underscores the importance of studying the natural history in individuals with PMS, including both cross-sectional and long-term longitudinal analyses. Clearer delineation of these neuropsychiatric symptoms will contribute to their recognition and prompt management and will also help uncover the underlying biological mechanisms, potentially leading to improved interventions.


Subject(s)
Chromosome Disorders/psychology , Adolescent , Adult , Age of Onset , Aged , Child , Chromosome Deletion , Chromosomes, Human, Pair 22 , Female , Humans , Male , Middle Aged , Phenotype , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL