Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Nutrients ; 16(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38892488

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia and neurogenerative disease (NDD), and it is also one of the leading causes of death worldwide. The number of AD patients is over 55 million according to 2020 Alzheimer's Disease International (ADI), and the number is increasing drastically without any effective cure. In this review, we discuss and analyze the potential role of anthocyanins (ACNs) against AD while understanding the molecular mechanisms. ACNs have been reported as having neuroprotective effects by mitigating cognitive impairments, apoptotic markers, neuroinflammation, aberrant amyloidogenesis, and tauopathy. Taken together, ACNs could be an important therapeutic agent for combating or delaying the onset of AD.


Subject(s)
Alzheimer Disease , Anthocyanins , Fatty Acids, Volatile , Neuroprotective Agents , Alzheimer Disease/drug therapy , Anthocyanins/pharmacology , Anthocyanins/therapeutic use , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome/drug effects , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Cognitive Dysfunction/drug therapy
2.
Chem Biol Interact ; 375: 110428, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36868496

ABSTRACT

Cadmium (Cd) produces cognition decline following single and repeated treatment, although the complete mechanisms are still unrevealed. Basal forebrain (BF) cholinergic neurons innervate the cortex and hippocampus, regulating cognition. Cd single and repeated exposure induced BF cholinergic neuronal loss, partly through thyroid hormones (THs) disruption, which may cause the cognition decline observed following Cd exposure. However, the mechanisms through which THs disruption mediate this effect remain unknown. To research the possible mechanisms through which Cd-induced THs deficiency may mediate BF neurodegeneration, Wistar male rats were treated with Cd for 1- (1 mg/kg) or 28-days (0.1 mg/kg) with or without triiodothyronine (T3, 40 µg/kg/day). Cd exposure promoted neurodegeneration, spongiosis, gliosis and several mechanisms related to these alterations (increased H202, malondialdehyde, TNF-α, IL-1ß, IL-6, BACE1, Aß and phosphorylated-Tau levels, and decreased phosphorylated-AKT and phosphorylated-GSK-3ß levels). T3 supplementation partially reversed the effects observed. Our results show that Cd induces several mechanisms that may be responsible for the neurodegeneration, spongiosis and gliosis observed in the rats' BF, which are partially mediated by a reduction in THs levels. These data may help to explain the mechanisms through which Cd induces BF neurodegeneration, possibly leading to the cognitive decline observed, providing new therapeutic tools to prevent and treat these damages.


Subject(s)
Basal Forebrain , Cadmium , Animals , Male , Rats , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Basal Forebrain/metabolism , Cadmium/toxicity , Gliosis/chemically induced , Glycogen Synthase Kinase 3 beta/metabolism , Inflammation , Rats, Wistar , Reactive Oxygen Species , tau Proteins/metabolism , Thyroid Hormones
3.
Eur J Med Chem ; 250: 115169, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36753881

ABSTRACT

A set of twenty-five thioxanthene-9-one and xanthene-9-one derivatives, that were previously shown to inhibit cholinesterases (ChEs) and amyloid ß (Aß40) aggregation, were evaluated for the inhibition of tau protein aggregation. All compounds exhibited a good activity, and eight of them (5-8, 10, 14, 15 and 20) shared comparable low micromolar inhibitory potency versus Aß40 aggregation and human acetylcholinesterase (AChE), while inhibiting human butyrylcholinesterase (BChE) even at submicromolar concentration. Compound 20 showed outstanding biological data, inhibiting tau protein and Aß40 aggregation with IC50 = 1.8 and 1.3 µM, respectively. Moreover, at 0.1-10 µM it also exhibited neuroprotective activity against tau toxicity induced by okadoic acid in human neuroblastoma SH-SY5Y cells, that was comparable to that of estradiol and PD38. In preliminary toxicity studies, these interesting results for compound 20 are somewhat conflicting with a narrow safety window. However, compound 10, although endowed with a little lower potency for tau and Aß aggregation inhibition additionally demonstrated good inhibition of ChEs and rather low cytotoxicity. Compound 4 is also worth of note for its high potency as hBChE inhibitor (IC50 = 7 nM) and for the three order of magnitude selectivity versus hAChE. Molecular modelling studies were performed to explain the different behavior of compounds 4 and 20 towards hBChE. The observed balance of the inhibitory potencies versus the relevant targets indicates the thioxanthene-9-one derivatives as potential MTDLs for AD therapy, provided that the safety window will be improved by further structural variations, currently under investigation.


Subject(s)
Alzheimer Disease , Neuroblastoma , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Butyrylcholinesterase/metabolism , Amyloid beta-Peptides/metabolism , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Molecular Structure , Structure-Activity Relationship , Neuroblastoma/drug therapy , Drug Design , Molecular Docking Simulation
4.
Pharmaceutics ; 14(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35214143

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease that causes memory loss, cognitive decline, and eventually dementia. The etiology of AD and its pathological mechanisms remain unclear due to its complex pathobiology. At the same time, the number of patients with AD is increasing worldwide. However, no therapeutic agents for AD are currently available for definitive care. Several phase 3 clinical trials using agents targeting amyloid ß (Aß) and its related molecules have failed, with the exception of aducanumab, an anti-Aß monoclonal antibody (mAb), clinically approved by the US Food and Drug Administration in 2021, which could be modified for AD drug development due to controversial approval. Neurofibrillary tangles (NFTs) composed of tau rather than senile plaques composed of Aß are correlated with AD pathogenesis. Moreover, Aß and tau pathologies initially proceed independently. At a certain point in the progression of AD symptoms, the Aß pathology is involved in the alteration and spreading of the tau pathology. Therefore, tau-targeting therapies have attracted the attention of pharmaceutical scientists, as well as Aß-targeting therapies. In this review, I introduce the implementations and potential of AD immunotherapy using intravenously administered anti-tau and anti-receptor bispecific mAbs. These cross the blood-brain barrier (BBB) based on receptor-mediated transcytosis and are subsequently cleared by microglia based on Fc-mediated endocytosis after binding to tau and lysosomal degradation.

5.
Ageing Res Rev ; 70: 101409, 2021 09.
Article in English | MEDLINE | ID: mdl-34273589

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder where the accumulation of amyloid plaques and the formation of tau tangles are the prominent pathological hallmarks. Increasing preclinical and clinical studies have revealed that different components of the immune system may act as important contributors to AD etiology and pathogenesis. The recognition of misfolded Aß and tau by immune cells can trigger a series of complex immune responses in AD, and then lead to neuroinflammation and neurodegeneration. In parallel, genome-wide association studies have also identified several immune related loci associated with increased - risk of AD by interfering with the function of immune cells. Other immune related factors, such as impaired immunometabolism, defective meningeal lymphatic vessels and autoimmunity might also be involved in the pathogenesis of AD. Here, we review the data showing the alterations of immune cells in the AD trajectory and seek to demonstrate the crosstalk between the immune cell dysfunction and AD pathology. We then discuss the most relevant research findings in regards to the influences of gene susceptibility of immune cells for AD. We also consider impaired meningeal lymphatics, immunometabolism and autoimmune mechanisms in AD. In addition, immune related biomarkers and immunotherapies for AD are also mentioned in order to offer novel insights for future research.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/genetics , Biomarkers , Genome-Wide Association Study , Humans , Immune System , tau Proteins
6.
ACS Chem Neurosci ; 12(3): 447-461, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33428389

ABSTRACT

Two series of naphthoquinone and anthraquinone derivatives decorated with an aromatic/heteroaromatic chain have been synthesized and evaluated as potential promiscuous agents capable of targeting different factors playing a key role in Alzheimer's disease (AD) pathogenesis. On the basis of the in vitro biological profiling, most of them exhibited a significant ability to inhibit amyloid aggregation, PHF6 tau sequence aggregation, acetylcholinesterase (AChE), and monoamine oxidase (MAO) B. In particular, naphthoquinone 2 resulted as one of the best performing multitarget-directed ligand (MTDL) experiencing a high potency profile in inhibiting ß-amyloid (Aß40) aggregation (IC50 = 3.2 µM), PHF6 tau fragment (91% at 10 µM), AChE enzyme (IC50 = 9.2 µM) jointly with a remarkable inhibitory activity against MAO B (IC50 = 7.7 nM). Molecular modeling studies explained the structure-activity relationship (SAR) around the binding modes of representative compound 2 in complex with hMAO B and hAChE enzymes, revealing inhibitor/protein key contacts and the likely molecular rationale for enzyme selectivity. Compound 2 was also demonstrated to be a strong inhibitor of Aß42 aggregation, with potency comparable to quercetin. Accordingly, atomic force microscopy (AFM) revealed that the most promising naphthoquinones 2 and 5 and anthraquinones 11 and 12 were able to impair Aß42 fibrillation, deconstructing the morphologies of its fibrillar aggregates. Moreover, the same compounds exerted a moderate neuroprotective effect against Aß42 toxicity in primary cultures of cerebellar granule cells. Therefore, our findings demonstrate that these molecules may represent valuable chemotypes toward the development of promising candidates for AD therapy.


Subject(s)
Alzheimer Disease , Naphthoquinones , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Anthraquinones/pharmacology , Cholinesterase Inhibitors/pharmacology , Drug Design , Humans , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Naphthoquinones/pharmacology , Structure-Activity Relationship
7.
Food Chem Toxicol ; 144: 111611, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32738378

ABSTRACT

Paraquat (PQ) produces hippocampal neuronal cell death and cognitive dysfunctions after unique and continued exposure, but the mechanisms are not understood. Primary hippocampal wildtype or ßAPP-Tau silenced cells were co-treated with PQ with or without E2, N-acetylcysteine (NAC), NS-398 (cyclooxygenase-2 inhibitor), MF63 (PGES-1 inhibitor) and/or recombinant brain-derived neurotrophic factor (BDNF) during one- and fourteen-days to studied PQ effect on prostaglandin E2 (PGE2) and BDNF signaling and their involvement in hyperphosphorylated Tau (pTau) and amyloid-beta (Aß) protein formation, and oxidative stress generation, that lead to neuronal cell loss through estrogenic disruption, as a possible mechanism of cognitive dysfunctions produced by PQ. Our results indicate that PQ overexpressed cyclooxygenase-2 that leads to an increase of PGE2 and alters the expression of EP1-3 receptor subtypes. PQ induced also a decrease of proBDNF and mature BDNF levels and altered P75NTR and tropomyosin receptor kinase B (TrkB) expression. PQ induced PGE2 and BDNF signaling dysfunction, mediated through estrogenic disruption, leading to Aß and pTau proteins synthesis, oxidative stress generation and finally to cell death. Our research provides relevant information to explain PQ hippocampal neurotoxic effects, indicating a probable explanation of the cognitive dysfunction observed and suggests new therapeutic strategies to protect against PQ toxic effects.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Cell Death/drug effects , Dinoprostone/metabolism , Estrogens/metabolism , Herbicides/pharmacology , Hippocampus/drug effects , Neurons/drug effects , Paraquat/pharmacology , Signal Transduction , Animals , Cells, Cultured , Female , Hippocampus/cytology , Hippocampus/metabolism , Neurons/metabolism , Oxidative Stress/drug effects , Pregnancy , Rats , Rats, Wistar
8.
Food Chem Toxicol ; 136: 110961, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31715309

ABSTRACT

The extensively utilized herbicide Paraquat (PQ) was reported to generate cognitive disorders and hippocampal neuronal cell death after unique and extended exposure. Although, most of the mechanisms that mediate these actions remain unknown. We researched whether PQ induces synaptic protein disruption, Tau and amyloid beta protein formation, oxidative stress generation, and hippocampal neuronal cell loss through anti-estrogen action in primary hippocampal neurons, after day and two weeks PQ treatment, as a probable mechanism of such learning and memory impairment. Our results reveal that PQ did not alter estrogen receptors (ERα and ERß) gene expression, yet it decreased ER activation, which led to synaptic proteins disruption and amyloid beta proteins generation and Tau proteins hyperphosphorylation. Estrogenic signaling disruption induced by PQ also downregulated the NRF2 pathway leading to oxidative stress generation. Finally, PQ exposure induced cell death mediated by ER dysfunction partially through oxidative stress and amyloid beta proteins generation and Tau proteins hyperphosphorylation. The results presented provide a therapeutic strategy to protect against PQ toxic effects, possibly giving an explanation for the learning and memory impairment generated following PQ exposure.


Subject(s)
Cell Death/drug effects , Hippocampus/drug effects , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Paraquat/toxicity , Receptors, Estrogen/metabolism , Amyloid beta-Peptides/metabolism , Animals , Cell Survival/drug effects , Down-Regulation , Female , Herbicides/toxicity , Hippocampus/metabolism , Lipid Peroxidation/drug effects , Pregnancy , Protein Carbonylation/drug effects , Rats, Wistar , Reactive Oxygen Species/metabolism , tau Proteins/metabolism
9.
J Ethnopharmacol ; 249: 112433, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31783135

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease (AD) is a frequently occurring disease of the elderly, and "deficiency" is the root of AD. Most famous experts of traditional Chinese medicine believe that the disease is based on deficiency, and the deficiency of kidney essence is the basis. Notopterygium incisum (Qiang huo) is beneficial to bladder, liver, and kidneys. It is used to treat liver and kidney deficiency, language difficulties, and mental coma. Qiang huo yu feng tang has been used to treat liver and kidney deficiency, unclear language and mental paralysis in many traditional Chinese medicine books and records. In modern times, it has been used to treat AD and exhibited favourable efficacy. AIM OF THE STUDY: This study attempts to investigate the effects of furocoumarins from Notopterygium incisum (NRE) on the Aß cascade, tau pathology and inflammatory pathology of AD. MATERIALS AND METHODS: In this study, we reported a detailed protocol for stabilizing HEK APPswe293T cells with lentivirus for the first time. This cell line can secrete high concentration of Aß. In addition, we treated N2a cells with AKT/PKC specific inhibitors (wortmannin/GF-109203X) and established a tau pathological cell model (AKT/PKC N2a) by activating GSK3ß and triggering hyperphosphorylation of tau. The Aß levels and the expression of phosphorylated tau were detected by ELISA and Western blot. The cognitive ability of NRE on APP/PS1 mice was detected using a Morris water maze (MWM) assay and Aß contents were also evaluated. RESULTS: In HEK APPswe293T cells, NRE (10, 20, 40 µg/mL) significantly inhibited the secretion and production of Aß in dose dependent manner. In addition, NRE also suppressed the expression of phosphorylated tau in wortmannin/GF-109203X treated N2a cells. Furthermore, NRE ameliorated the cognitive impairment of APP/PS1 mice, and the contents of Aß, IL-1ß and TNF-α were significantly depressed in hippocampus and cortex. CONCLUSION: In conclusion, our results demonstrated that NRE has a potential anti-AD effect via the inhibition of the Aß cascade, tau pathology and neuroinflammation in vitro and in vivo.


Subject(s)
Alzheimer Disease/drug therapy , Cognitive Dysfunction/drug therapy , Drugs, Chinese Herbal/pharmacology , Hippocampus/drug effects , Medicine, Chinese Traditional/methods , Alzheimer Disease/complications , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Apiaceae/chemistry , Behavior Observation Techniques , Cognition/drug effects , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , HEK293 Cells , Hippocampus/immunology , Hippocampus/pathology , Humans , Learning/drug effects , Male , Mice , Mice, Transgenic , Phosphorylation/drug effects , tau Proteins/metabolism
10.
Alzheimers Res Ther ; 11(1): 107, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31847886

ABSTRACT

BACKGROUND: Alzheimer disease (AD) is characterized by the accumulation of beta-amyloid (Aß) plaques and neurofibrillary tangles composed of hyperphosphorylated tau, which together lead to neurodegeneration and cognitive decline. Current therapeutic approaches have primarily aimed to reduce pathological aggregates of either Aß or tau, yet phase 3 clinical trials of these approaches have thus far failed to delay disease progression in humans. Strong preclinical evidence indicates that these two abnormally aggregated proteins interact synergistically to drive downstream neurodegeneration. Therefore, combinatorial therapies that concurrently target both Aß and tau might be needed for effective disease modification. METHODS: A combinatorial vaccination approach was designed to concurrently target both Aß and tau pathologies. Tau22/5xFAD (T5x) bigenic mice that develop both pathological Aß and tau aggregates were injected intramuscularly with a mixture of two MultiTEP epitope vaccines: AV-1959R and AV-1980R, targeting Aß and tau, respectively, and formulated in AdvaxCpG, a potent polysaccharide adjuvant. Antibody responses of vaccinated animals were measured by ELISA, and neuropathological changes were determined in brain homogenates of vaccinated and control mice using ELISA and Meso Scale Discovery (MSD) multiplex assays. RESULTS: T5x mice immunized with a mixture of Aß- and tau-targeting vaccines generated high Aß- and tau-specific antibody titers that recognized senile plaques and neurofibrillary tangles/neuropil threads in human AD brain sections. Production of these antibodies in turn led to significant reductions in the levels of soluble and insoluble total tau, and hyperphosphorylated tau as well as insoluble Aß42, within the brains of bigenic T5x mice. CONCLUSIONS: AV-1959R and AV-1980R formulated with AdvaxCpG adjuvant are immunogenic and therapeutically potent vaccines that in combination can effectively reduce both of the hallmark pathologies of AD in bigenic mice. Taken together, these findings warrant further development of this vaccine technology for ultimate testing in human AD.


Subject(s)
Alzheimer Disease/therapy , Alzheimer Vaccines , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Brain/metabolism , Disease Models, Animal , Mice , Mice, Transgenic , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology
SELECTION OF CITATIONS
SEARCH DETAIL