Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 679
Filter
1.
Bioorg Chem ; 150: 107568, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38905887

ABSTRACT

Phenylselenide based BODIPY probe was successfully synthesized and characterized by NMR spectroscopic techniques (1H, 13C and 77Se NMR), mass spectrometry and single crystal XRD. Surprisingly, crystal packing diagram of the probe showed formation of 1-D strip through intermolecular F---H interaction. The probe was screened with various Reactive Oxygen Species (ROS) and found to be selective for superoxide ion over other ROS via "turn-on" fluorescence response. The probe selectively and sensitively detects superoxide with a lower detection limit (43.34 nM) without interfering with other ROS. The quantum yield of the probe was found to increase from 0.091 % to 30.4 % (334-fold) after oxidation. Theoretical calculations (DFT and TD-DFT) were also performed to understand the sensing mechanism of the probe. The probe was able to effectively detect superoxide inside living cells without any toxic effect.

2.
Invest New Drugs ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38880855

ABSTRACT

Radioresistance is an inevitable obstacle in the clinical treatment of inoperable patients with non-small cell lung cancer (NSCLC). Combining treatment with radiosensitizers may improve the efficacy of radiotherapy. Previously, the quinoline derivative 10E as new exporter of Nur77 has shown superior antitumor activity in hepatocellular carcinoma. Here, we aimed to investigate the radiosensitizing activity and acting mechanisms of 10E. In vitro, A549 and H460 cells were treated with control, ionizing radiation (IR), 10E, and 10E + IR. Cell viability, apoptosis, and cycle were examined using CCK-8 and flow cytometry assays. Protein expression and localization were examined using western blotting and immunofluorescence. Tumor xenograft models were established to evaluate the radiosensitizing effect of 10E in vivo. 10E significantly inhibited cell proliferation and increased their radiosensitivity while reducing level of p-BCRA1, p-DNA-PKs, and 53BP1 involved in the DNA damage repair pathway, indicating that its radiosensitizing activity is closely associated with repressing DNA damage repair. A549 cells showed low level of Nur77 and a low response to IR but 10E-treated A549 cells showed high level of Nur77 indicating that Nur77 is a core radiosensitivity factor and 10E restores the expression of Nur77. Nur77 and Ku80 extranuclear co-localization in the 10E-treated A549 cells suggested that 10E-modulated Nur77 nuclear exportation inhibits DNA damage repair pathways and increases IR-triggered apoptosis. The combination of 10E and IR significantly inhibits tumor growth in a tumor xenograft model. Our findings suggest that 10E acts as a radiosensitizer and that combining 10E with radiotherapy may be a potential strategy for NSCLC treatment.

3.
Article in English | MEDLINE | ID: mdl-38853344

ABSTRACT

Lung cancer has the worst prognosis with an average 5-year survival rate of only 10%-20%. Lung cancer has the highest prevalence rate and a second most common cause of cancer-associated mortalities worldwide. The present study was planned to explore the anticancer effects of pelargonidin against the lung cancer A549 cells via analyzing oxidative stress-mediated apoptosis. The viability of both control and pelargonidin-treated A549 cells was analyzed using the MTT cytotoxicity assay at different time periods. The levels of endogenous ROS generation, mitochondrial membrane potential (Δψm), and apoptosis were assessed using corresponding fluorescent staining assays. The levels of oxidative stress biomarkers, including TBARS, SOD, CAT, and GSH, in the cell lysates of control and pelargonidin-treated A549 cells were examined using the assay kits. The pelargonidin treatment substantially suppressed the A549 cell growth. Further, pelargonidin promoted the ROS production and depleted the Δψm levels in the A549 cells. The fluorescent staining assays witnessed the occurrence of increased apoptosis in the pelargonidin-treated A549 cells. The pelargonidin also boosted the TBARS and reduced the antioxidant levels thereby promoted the oxidative stress-regulated apoptosis in the A549 cells. In summary, the findings' results of the current study demonstrated an anticancer activity of pelargonidin on A549 cells. The pelargonidin treatment substantially decreased the growth and encouraged the oxidative stress-regulated apoptosis in A549 cells. Therefore, it was evident that the pelargonidin could be employed as an effective anticancer candidate to treat the lung cancer.

4.
Toxics ; 12(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38922064

ABSTRACT

Emerging organophosphate flame retardants (eOPFRs) have attracted attention in recent times and are expected to gain extensive usage in the coming years. However, they may have adverse effects on organisms. Due to their novel nature, there are few relevant articles dealing with toxicological studies of the above eOPFRs, especially their information on the perturbation of cellular metabolism, which is, thus far, marginally understood. Our research initially assessed the cytotoxicity of eOPFRs, which include compounds like cresyl diphenyl phosphate (CDP), resorcinol bis(diphenyl phosphate) (RDP), triallyl phosphate (TAP), and pentaerythritol phosphate alcohol (PEPA). This evaluation was conducted using the methyl thiazolyl tetrazolium (MTT) assay. Subsequently, we utilized a gas chromatography/mass spectrometry (GC/MS)-based metabolomic approach to investigate the metabolic disruptions induced by these four eOPFRs in A549 cells. The MTT results showed that, at high concentrations of 1 mM, their cytotoxicity was ranked as CDP > TAP > RDP > PEPA. In addition, metabolic studies at low concentrations of 10 µM showed that the metabolic interference of CDP, TAP, and PEPA focuses on oxidative stress, amino acid metabolism, and energy metabolism, while RDP mainly affects energy metabolism-galactose metabolism and gluconeogenesis. Therefore, from the perspective of cytotoxicity and metabolic analysis, RDP may be a more promising alternative. Our experiments provide important insights into the possible metabolic effects of potential toxic substances and complement the evidence on the human health risks of eOPFRs.

5.
Yi Chuan ; 46(5): 398-407, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763774

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, and irreversible interstitial lung disease with unknown cause. To explore the role and regulatory mechanism of leucine-rich repeat-containing protein 15 (LRRC15) in IPF, bleomycin (BLM)-induced pulmonary fibrosis in mouse and A549 cells were constructed, and the expression of LRRC15 were detected. Then, MTT, GFP-RFP-LC3 dual fluorescent labeling system and Western blotting were used to investigate the effects of LRRC15 on cell activity and autophagy after transfection of siLRRC15, respectively. The results indicated that the expression of LRRC15 was significantly increased after the BLM treatment in mouse lung tissue and A549 cells. The designed and synthesized siLRRC15 followed by transfection into A549 cells resulted in a dramatic reduction in LRRC15 expression and partially restored the cell damage induced by BLM. Moreover, the expression of LC3-II and P62 were up-regulated, the amount of autophagosome were increased by GFP-RFP-LC3 dual fluorescent labeling assay after BLM treatment. Meanwhile, this study also showed that the key autophagy proteins LC3-II, ATG5 and ATG7 were up-regulated, P62 was down-regulated and autophagic flux were enhanced after further treatment of A549 cells with siLRRC15. The above findings suggest that LRRC15 is an indicator of epithelial cell damage and may participate in the regulation of fibrosis through autophagy mechanism in IPF. This study provides necessary theoretical basis for further elucidating the mechanism of IPF.


Subject(s)
Autophagy , Bleomycin , Animals , Humans , Male , Mice , A549 Cells , Autophagy/drug effects , Bleomycin/pharmacology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism
6.
Int J Pharm ; 658: 124199, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38703928

ABSTRACT

Dendrimers have emerged as an important group of nanoparticles to transport drugs, DNA, or RNA into target cells in cancer and other diseases. Various functional modifications can be imposed on dendrimers to increase the efficacy and specificity in delivering their cargo to the target cells and decrease their toxicity. In the present work, we evaluated the potential of carbosilane polyphenolic dendrimers modified with caffeic acid (CA) and polyethylene glycol (PEG) to deliver proapoptotic Mcl-1 and Bcl-2 siRNAs to A549 cancer cells. Dendrimers formed stable complexes with siRNAs as assessed by transmission electron microscopy and gel electrophoresis. Modification of dendrimers with PEG reduced the size and the zeta potential of dendrimer/siRNA complexes. The presence of PEG caused a red shift of the CD spectrum, and this effect was the more pronounced, the higher the dendrimer/siRNA ratio was. The nanocomplexes were internalized by A549. All studied dendrimer/siRNA formulations inhibited tumor cell migration and adhesion and caused an increase in the population of early apoptotic cells. Among four tested dendrimers, the polyphenolic compound containing two caffeic acid moieties complexed with siRNA demonstrated the lowest polydispersity index and showed an excellent transfection profile. In conclusion, this dendrimer are a promising candidate for the delivery of siRNA into cancer cells in further in vivo studies.


Subject(s)
Apoptosis , Dendrimers , Polyethylene Glycols , Polyphenols , RNA, Small Interfering , Humans , Dendrimers/chemistry , Dendrimers/administration & dosage , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , A549 Cells , Apoptosis/drug effects , Polyphenols/chemistry , Polyphenols/pharmacology , Polyphenols/administration & dosage , Polyethylene Glycols/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Caffeic Acids/administration & dosage , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Cell Movement/drug effects , Drug Carriers/chemistry , Silanes/chemistry , Transfection/methods , Cell Line, Tumor
7.
Part Fibre Toxicol ; 21(1): 26, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778339

ABSTRACT

BACKGROUND: During inhalation, airborne particles such as particulate matter ≤ 2.5 µm (PM2.5), can deposit and accumulate on the alveolar epithelial tissue. In vivo studies have shown that fractions of PM2.5 can cross the alveolar epithelium to blood circulation, reaching secondary organs beyond the lungs. However, approaches to quantify the translocation of particles across the alveolar epithelium in vivo and in vitro are still not well established. In this study, methods to assess the translocation of standard diesel exhaust particles (DEPs) across permeable polyethylene terephthalate (PET) inserts at 0.4, 1, and 3 µm pore sizes were first optimized with transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-VIS), and lock-in thermography (LIT), which were then applied to study the translocation of DEPs across human alveolar epithelial type II (A549) cells. A549 cells that grew on the membrane (pore size: 3 µm) in inserts were exposed to DEPs at different concentrations from 0 to 80 µg.mL- 1 ( 0 to 44 µg.cm- 2) for 24 h. After exposure, the basal fraction was collected and then analyzed by combining qualitative (TEM) and quantitative (UV-VIS and LIT) techniques to assess the translocated fraction of the DEPs across the alveolar epithelium in vitro. RESULTS: We could detect the translocated fraction of DEPs across the PET membranes with 3 µm pore sizes and without cells by TEM analysis, and determine the percentage of translocation at approximatively 37% by UV-VIS (LOD: 1.92 µg.mL- 1) and 75% by LIT (LOD: 0.20 µg.cm- 2). In the presence of cells, the percentage of DEPs translocation across the alveolar tissue was determined around 1% at 20 and 40 µg.mL- 1 (11 and 22 µg.cm- 2), and no particles were detected at higher and lower concentrations. Interestingly, simultaneous exposure of A549 cells to DEPs and EDTA can increase the translocation of DEPs in the basal fraction. CONCLUSION: We propose a combination of analytical techniques to assess the translocation of DEPs across lung tissues. Our results reveal a low percentage of translocation of DEPs across alveolar epithelial tissue in vitro and they correspond to in vivo findings. The combination approach can be applied to any traffic-generated particles, thus enabling us to understand their involvement in public health.


Subject(s)
Particulate Matter , Pulmonary Alveoli , Vehicle Emissions , Humans , Vehicle Emissions/toxicity , Vehicle Emissions/analysis , A549 Cells , Particulate Matter/toxicity , Particulate Matter/analysis , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/metabolism , Particle Size , Microscopy, Electron, Transmission , Polyethylene Terephthalates/chemistry , Polyethylene Terephthalates/toxicity , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Air Pollutants/toxicity , Air Pollutants/analysis
8.
Fitoterapia ; 176: 106013, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740342

ABSTRACT

Astragalus membranaceus and Cordyceps kyushuensis were used to obtain Astragalus membranaceus-Cordyceps kyushuensis bi-directional solid fermentation products using the bi-directional solid fermentation technique. The fermentation products were isolated and purified to obtain 20 individual compounds, of which compound 1 was a novel isoflavane, and compounds 2, 3, and 4 were novel isoflavones, along with 16 known compounds. In vitro experiments demonstrated that compounds 4, 5, 8, 10, and 20 exhibited significant inhibitory activity against A549 lung cancer cells. Specifically, the IC50 value of the novel compound 4 was 53.4 µM, while the IC50 value of cordycepin was 9.0 µM.


Subject(s)
Astragalus propinquus , Cordyceps , Fermentation , Cordyceps/chemistry , Astragalus propinquus/chemistry , Humans , A549 Cells , Molecular Structure , Flavonoids/pharmacology , Flavonoids/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Isoflavones/pharmacology , Isoflavones/isolation & purification , Deoxyadenosines
9.
Toxicol Ind Health ; 40(7): 387-397, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729922

ABSTRACT

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a widely used organophosphorus flame retardant and has been detected in various environmental matrices including indoor dust. Inhalation of indoor dust is one of the most important pathways for human exposure to TDCIPP. However, its adverse effects on human lung cells and potential impacts on respiratory toxicity are largely unknown. In the current study, human non-small cell carcinoma (A549) cells were selected as a cell model, and the effects of TDCIPP on cell viability, cell cycle, cell apoptosis, and underlying molecular mechanisms were investigated. Our data indicated a concentration-dependent decrease in the cell viability of A549 cells after exposure to TDCIPP for 48 h, with half lethal concentration (LC50) being 82.6 µM. In addition, TDCIPP caused cell cycle arrest mainly in the G0/G1 phase by down-regulating the mRNA expression of cyclin D1, CDK4, and CDK6, while up-regulating the mRNA expression of p21 and p27. In addition, cell apoptosis was induced via altering the expression levels of Bcl-2, BAX, and BAK. Our study implies that TDCIPP may pose potential health risks to the human respiratory system and its toxicity should not be neglected.


Subject(s)
Apoptosis , Cell Survival , Flame Retardants , Organophosphorus Compounds , Humans , A549 Cells , Apoptosis/drug effects , Flame Retardants/toxicity , Cell Survival/drug effects , Organophosphorus Compounds/toxicity , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects
10.
Mol Med Rep ; 30(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38695251

ABSTRACT

Although exogenous calcitonin gene­related peptide (CGRP) protects against hyperoxia­induced lung injury (HILI), the underlying mechanisms remain unclear. The present study attempted to elucidate the molecular mechanism by which CGRP protects against hyperoxia­induced alveolar cell injury. Human alveolar A549 cells were treated with 95% hyperoxia to establish a hyperoxic cell injury model. ELISA was performed to detect the CGRP secretion. Immunofluorescence, quantitative (q)PCR, and western blotting were used to detect the expression and localization of CGRP receptor (CGRPR) and transient receptor potential vanilloid 1 (TRPV1). Cell counting kit­8 and flow cytometry were used to examine the proliferation and apoptosis of treated cells. Digital calcium imaging and patch clamp were used to analyze the changes in intracellular Ca2+ signaling and membrane currents induced by CGRP in A549 cells. The mRNA and protein expression levels of Cyclin D1, proliferating cell nuclear antigen (PCNA), Bcl­2 and Bax were detected by qPCR and western blotting. The expression levels of CGRPR and TRPV1 in A549 cells were significantly downregulated by hyperoxic treatment, but there was no significant difference in CGRP release between cells cultured under normal air and hyperoxic conditions. CGRP promoted cell proliferation and inhibited apoptosis in hyperoxia, but selective inhibitors of CGRPR and TRPV1 channels could effectively attenuate these effects; TRPV1 knockdown also attenuated this effect. CGRP induced Ca2+ entry via the TRPV1 channels and enhanced the membrane non­selective currents through TRPV1 channels. The CGRP­induced increase in intracellular Ca2+ was reduced by inhibiting the phospholipase C (PLC)/protein kinase C (PKC) pathway. Moreover, PLC and PKC inhibitors attenuated the effects of CGRP in promoting cell proliferation and inhibiting apoptosis. In conclusion, exogenous CGRP acted by inversely regulating the function of TRPV1 channels in alveolar cells. Importantly, CGRP protected alveolar cells from hyperoxia­induced injury via the CGRPR/TRPV1/Ca2+ axis, which may be a potential target for the prevention and treatment of the HILI.


Subject(s)
Alveolar Epithelial Cells , Calcitonin Gene-Related Peptide , Hyperoxia , Lung Injury , Humans , A549 Cells , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Apoptosis/drug effects , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/pharmacology , Calcium/metabolism , Calcium Signaling/drug effects , Cell Proliferation/drug effects , Hyperoxia/metabolism , Hyperoxia/pathology , Receptors, Calcitonin Gene-Related Peptide/metabolism , Signal Transduction/drug effects , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Lung Injury/metabolism , Lung Injury/pathology
11.
Article in English | MEDLINE | ID: mdl-38629375

ABSTRACT

BACKGROUND: Organotin(IV) complexes of dithiocarbamate are vital in medicinal chemistry, exhibiting potential in targeting cancer cells due to their unique properties that enhance targeted delivery. This study aimed to synthesize and characterize organotin(IV) N-ethyl-N-benzyldithiocarbamate complexes (ONBDCs) and evaluate their cytotoxicity against A549 cells, which are commonly used as a model for human lung cancer research. METHOD: The two ONBDC derivatives - ONBDC 1 (dimethyltin(IV) N-ethyl-N-benzyldithiocarbamate) and ONBDC 2 (triphenyltin(IV) N-ethyl-N-benzyldithiocarbamate) - were synthesized via the reaction of tin(IV) chloride with N-ethylbenzylamine in the presence of carbon disulfide. A range of analytical techniques, including elemental analysis, IR spectroscopy, NMR spectroscopy, UV-Vis spectrometry, TGA/DTA analysis, and X-ray crystallography, was conducted to characterize these compounds comprehensively. The cytotoxic effects of ONBDCs against A549 cells were evaluated using MTT assay. RESULTS: Both compounds were synthesized and characterized successfully via elemental and spectroscopies analysis. MTT assay revealed that ONBDC 2 demonstrated remarkable cytotoxicity towards A549 cells, with an IC50 value of 0.52 µM. Additionally, ONBDC 2 displayed significantly higher cytotoxic activity against the A549 cell line when compared to the commercially available chemotherapeutic agent cisplatin (IC50: 32 µM). CONCLUSION: Thus, it was shown that ONBDC 2 could have important anticancer properties and should be further explored as a top contender for creating improved and specialized cancer treatments.

12.
Ther Deliv ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639652

ABSTRACT

Aim: To prepare fisetin (FIS) cubosomal nanoformulation to increase aqueous solubility and anticancer activity. Methods: Top-down method using glyceryl monooleate (GMO) and Pluronic F-127. Results: Optimized using 2% GMO and 1% Pluronic F-127, reported 93.07 nm particle size, 80.10% drug entrapment, and reports more than 50% enhanced in vitro drug release than native FIS. MTT assay reports IC50 Values of FIS 16.59 µg/ml and optimized cubosomal FIS nanoformulation (FISCUB) 12.18 µg/ml. The colony numbers observed in clonogenic assay for FISCUB were 8.33 ± 0.58 and FIS 11.67 ± 1.15. In flow cytometry study, apoptotic cells in FISCUB and FIS-treated A549 cells were found to be 33.4 and 6.83% respectively. Conclusion: A stable cubosomal nanoformulation of FIS showed enhanced aqueous solubility and anticancer activity.

13.
Talanta ; 274: 126052, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38608633

ABSTRACT

Lung cancer (LC) is a leading cause of global cancer-related deaths, highlighting the development of innovative methods for biomarker detection improving the early diagnostics. microRNAs (miRs) alterations are known to be involved in the initiation and progression of human cancers and can act as biomarkers for diagnostics and treatment. Herein, we develop the application of molecular beacon (MB) technology to monitor miR-155-3p expression in human lung adenocarcinoma A549 cells without complementary DNA synthesis, amplification, or expensive reagents. Furthermore, we produced gold nanoparticles (AuNPs) for delivering antisense oligonucleotides into A549 cells to reduce miR-155-3p expression, which was subsequently detectable using the MB. The MB was designed and structural characterized by Förster Resonance Energy Transfer (FRET)-melting, Circular Dichroism (CD), Nuclear magnetic resonance (NMR), and fluorometric experiments, and then the hybridization conditions were optimized for an in vitro approach involving the detection of miR-155-3p in total RNA extracted from A549 cell line. The expression profile of miR-155-3p was obtained by RT-qPCR. The results demonstrated that MB was properly designed and showed efficacy in targeting miR-155-3p. Furthermore, a limit of detection down to nanomolar concentration was achieved and the specificity of the biosensor was proved. Moreover, the self-assembly of ASOs with AuNPs exhibited exceptional target specificity, effectively silencing miR-155-3p. Notably, compared to lipid-based transfection agent, AuNPs displayed superior silencing efficiency. We highlighted the ability of MB to detect changes in the target gene expression after gene silencing. Overall, this innovative approach represents a promising tool for detecting various biomarkers at the same time, with potential applications in clinical settings.


Subject(s)
Adenocarcinoma of Lung , Gold , Lung Neoplasms , Metal Nanoparticles , MicroRNAs , Humans , MicroRNAs/genetics , Gold/chemistry , Metal Nanoparticles/chemistry , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , A549 Cells , Gene Silencing
14.
Biomater Adv ; 159: 213823, 2024 May.
Article in English | MEDLINE | ID: mdl-38460353

ABSTRACT

Lung cancer, one of the most common causes of high mortality worldwide, still lacks appropriate and convenient treatment options. Photodynamic therapy (PDT) has shown promising results against cancer, especially in recent years. However, pulmonary drug delivery of the predominantly hydrophobic photosensitizers still represents a significant obstacle. Nebulizing DPPC/Cholesterol liposomes loaded with the photosensitizer curcumin via a vibrating mesh nebulizer might overcome current restrictions. In this study, the liposomes were prepared by conventional thin-film hydration and two other methods based on dual centrifugation. The liposomes' physicochemical properties were determined before and after nebulization, showing that liposomes do not undergo any changes. However, morphological characterization of the differently prepared liposomes revealed structural differences between the methods in terms of lamellarity. Internalization of curcumin in lung adenocarcinoma (A549) cells was visualized and quantified. The generation of reactive oxygen species because of the photoreaction was also proven. The photodynamic efficacy of the liposomal formulations was tested against A549 cells. They revealed different phototoxic responses at different radiant exposures. Furthermore, the photodynamic efficacy was investigated after nebulizing curcumin-loaded liposomes onto xenografted tumors on the CAM, followed by irradiation, and evaluated using positron emission tomography/computed tomography and histological analysis. A decrease in tumor metabolism could be observed. Based on the efficacy of curcumin-loaded liposomes in 2D and 3D models, liposomes, especially with prior film formation, can be considered a promising approach for PDT against lung cancer.


Subject(s)
Curcumin , Lung Neoplasms , Humans , Liposomes/therapeutic use , Curcumin/pharmacology , Curcumin/therapeutic use , Drug Delivery Systems , Nebulizers and Vaporizers , Photosensitizing Agents/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology
15.
Toxicology ; 504: 153783, 2024 May.
Article in English | MEDLINE | ID: mdl-38518840

ABSTRACT

Despite the wide application of graphene-based materials, the information of the toxicity associated to some specific derivatives such as aminated graphene oxide is scarce. Likewise, most of these studies analyse the pristine materials, while the available data regarding the harmful effects of degraded forms is very limited. In this work, the toxicity of graphene oxide (GO), aminated graphene oxide (GO-NH2), and their respective degraded forms (dGO and dGO-NH2) obtained after being submitted to high-intensity sonication was evaluated applying in vitro assays in different models of human exposure. Viability and ROS assays were performed on A549 and HT29 cells, while their skin irritation potential was tested on a reconstructed human epidermis model. The obtained results showed that GO-NH2 and dGO-NH2 substantially decrease cell viability in the lung and gastrointestinal models, being this reduction slightly higher in the cells exposed to the degraded forms. In contrast, this parameter was not affected by GO and dGO which, conversely, showed the ability to induce higher levels of ROS than the pristine and degraded aminated forms. Furthermore, none of the materials is skin irritant. Altogether, these results provide new insights about the potential harmful effects of the selected graphene-based nanomaterials in comparison with their degraded counterparts.


Subject(s)
Cell Survival , Graphite , Nanostructures , Reactive Oxygen Species , Graphite/toxicity , Graphite/chemistry , Humans , Cell Survival/drug effects , Reactive Oxygen Species/metabolism , A549 Cells , Nanostructures/toxicity , Nanostructures/chemistry , HT29 Cells , Skin Irritancy Tests/methods
16.
Eur J Pharm Sci ; 196: 106748, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38471594

ABSTRACT

Lung cancer is one of the most common causes of high mortality worldwide. Current treatment strategies, e.g., surgery, radiotherapy, chemotherapy, and immunotherapy, insufficiently affect the overall outcome. In this study, we used curcumin as a natural photosensitizer in photodynamic therapy and encapsulated it in liposomes consisting of stabilizing tetraether lipids aiming for a pulmonary drug delivery system against lung cancer. The liposomes with either hydrolyzed glycerol-dialkyl-glycerol tetraether (hGDGT) in different ratios or hydrolyzed glycerol-dialkyl-nonitol tetraether (hGDNT) were prepared by dual centrifugation (DC), an innovative method for liposome preparation. The liposomes' physicochemical characteristics before and after nebulization and other nebulization characteristics confirmed their suitability. Morphological characterization using atomic force and transmission electron microscopy showed proper vesicular structures indicative of liposomes. Qualitative and quantitative uptake of the curcumin-loaded liposomes in lung adenocarcinoma (A549) cells was visualized and proven. Phototoxic effects of the liposomes were detected on A549 cells, showing decreased cell viability. The generation of reactive oxygen species required for PDT and disruption of mitochondrial membrane potential were confirmed. Moreover, the chorioallantoic membrane (CAM) model was used to further evaluate biocompatibility and photodynamic efficacy in a 3D cell culture context. Photodynamic efficacy was assessed by PET/CT after nebulization of the liposomes onto the xenografted tumors on the CAM with subsequent irradiation. The physicochemical properties and the efficacy of tetraether lipid liposomes encapsulating curcumin, especially liposomes containing hGDNT, in 2D and 3D cell cultures seem promising for future PDT usage against lung cancer.

17.
Bioelectromagnetics ; 45(5): 218-225, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38533693

ABSTRACT

Mounting literature indicates that electromagnetic pulses (EMP) is the promising modality to treat cancers with advantages such as noninvasiveness and few side-effects, but its appropriate parameters and underlying mechanisms such as its influence on tumor-derived exosomes (TDEs) are largely unknown. This study aimed to elucidate effects of EMP, exosome inhibition and their coaction on A549 lung adenocarcinoma cells. A549 cells were randomly divided into control group, GW4869 group treated by 20 µM GW4869, vehicle group treated by dimethyl sulfoxide, EMP group treated by EMP exposure, and EMPG group treated by EMP exposure combined with 20 µM GW4869. After EMP exposure, cell proliferation was determined by CCK8 assay, cell cycle and apoptosis was detected by flow cytometry, and cell migration was determined by transwell assay. The results showed that EMP or exosomes inhibition did not affect cell proliferation, cell cycle, apoptosis and cell migration (p > 0.05), but cell migration in EMPG group was significantly decreased compared with vehicle group (p < 0.05). We concluded that under the experimental condition, EMP or GW4869 alone had no effects on behaviors of A549 cells, but their coaction could effectively inhibit the migration of A549 cells.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Exosomes , Humans , Exosomes/metabolism , A549 Cells , Cell Movement/drug effects , Cell Proliferation/drug effects , Apoptosis/drug effects , Benzylidene Compounds/pharmacology , Aniline Compounds/pharmacology , Cell Cycle/drug effects , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/radiotherapy
18.
Bio Protoc ; 14(5): e4949, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38464942

ABSTRACT

Autophagy is a conserved homeostatic mechanism involved in cellular homeostasis and many disease processes. Although it was first described in yeast cells undergoing starvation, we have learned over the years that autophagy gets activated in many stress conditions and during development and aging in mammalian cells. Understanding the fundamental mechanisms underlying autophagy effects can bring us closer to better insights into the pathogenesis of many disease conditions (e.g., cardiac muscle necrosis, Alzheimer's disease, and chronic lung injury). Due to the complex and dynamic nature of the autophagic processes, many different techniques (e.g., western blotting, fluorescent labeling, and genetic modifications of key autophagy proteins) have been developed to delineate autophagy effects. Although these methods are valid, they are not well suited for the assessment of time-dependent autophagy kinetics. Here, we describe a novel approach: the use of DAPRed for autophagic flux measurement via live cell imaging, utilizing A549 cells, that can visualize and quantify autophagic flux in real time in single live cells. This approach is relatively straightforward in comparison to other experimental procedures and should be applicable to any in vitro cell/tissue models. Key features • Allows real-time qualitative imaging of autophagic flux at single-cell level. • Primary cells and cell lines can also be utilized with this technique. • Use of confocal microscopy allows visualization of autophagy without disturbing cellular functions.

19.
Artif Cells Nanomed Biotechnol ; 52(1): 186-200, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38465883

ABSTRACT

Green-mediated synthesis of nanoparticles has earned a promising role in the area of nanotechnology due to their biomedical applications. This study describes the synthesis of silver nanoparticles (AgNPs) using Mikania micrantha leaf extract and its functional activities against cancer. The synthesis of AgNPs was confirmed using Ultraviolet-Visible (UV-Vis) spectrum that exhibited an absorption band at 459 nm. The bioactive compounds of M. micrantha leaf extract that functioned as reducing and capping agents were confirmed by a shift in the absorption bands in Fourier Transform Infra-red Spectroscopy (FT-IR). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) studies validated the spherical shape and size of AgNPs, respectively. Energy Dispersive Spectroscopy (EDS) analysis revealed the presence of elemental silver. The crystalline nature of AgNPs was confirmed by the X-ray Diffraction Analysis (XRD). AgNPs effectively induced cytotoxicity and prevented A549 cell colony formation in a dose-dependent manner. Treatment of A549 cells with AgNPs also increased DNA damage, which was coupled with elevated lipid peroxidation and decreased antioxidant enzymes such as glutathione (GSH), glutathione-s-transferase (GST), and superoxide dismutase (SOD). Following AgNPs treatment, the mRNA expression levels of the pro-apoptotic genes as well as the activities of caspases were significantly elevated in A549 cells while the expression levels of anti-apoptotic genes were downregulated. Our study demonstrates the potential of the synthesised AgNPs for cancer therapy possibly targeting the apoptotic pathway.


Subject(s)
Adenocarcinoma of Lung , Metal Nanoparticles , Mikania , Humans , Silver/pharmacology , Silver/chemistry , Caspases , Metal Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Apoptosis , Glutathione , Adenocarcinoma of Lung/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology
20.
Cells ; 13(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474417

ABSTRACT

Environmental pollution caused by plastic is a present problem. Polystyrene is a widely used packaging material (e.g., Styrofoam) that can be broken down into microplastics through abrasion. Once the plastic is released into the environment, it is dispersed by wind and atmospheric dust. In this study, we investigated the uptake of polystyrene particles into human cells using A549 cells as a model of the alveolar epithelial barrier, CaCo-2 cells as a model of the intestinal epithelial barrier, and THP-1 cells as a model of immune cells to simulate a possible uptake of microplastics by inhalation, oral uptake, and interaction with the cellular immune system, respectively. The uptake of fluorescence-labeled beads by the different cell types was investigated by confocal laser scanning microscopy in a semi-quantitative, concentration-dependent manner. Additionally, we used Raman spectroscopy as a complementary method for label-free qualitative detection and the visualization of polystyrene within cells. The uptake of polystyrene beads by all investigated cell types was detected, while the uptake behavior of professional phagocytes (THP-1) differed from that of adherent epithelial cells.


Subject(s)
Plastics , Polystyrenes , Humans , Caco-2 Cells , Microplastics , Particle Size , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...