Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Mycopathologia ; 189(4): 66, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39003373

ABSTRACT

Cat-transmitted sporotrichosis is caused by the emerging fungal pathogen Sporothrix brasiliensis and constitutes a significant public health issue that affects people living in resource-poor urban centers in Brazil. The lack of knowledge about transmission dynamics makes it difficult to propose public health policies to contain the advance of sporotrichosis. We describe the recent emergence of 1,176 cases of sporotrichosis in cats (2016 to 2021) in the metropolitan region of Recife, Brazil, leading to significant zoonotic transmission and an overwhelming occurrence of S. brasiliensis as the etiological agent. Most cases were from cats in the cities of Olinda (408/1,176; 34.70%), Jaboatão dos Guararapes (332/1,176; 28.23%), and Recife (237/1,176; 20.15%). Molecular typing using amplified fragment length polymorphism (EcoRI-GA/MseI-AG) revealed low polymorphic information content (PIC = 0.2499) and heterozygosity (H = 0.2928), typical of an outbreak scenario. Dendrogram and multivariate cluster analysis revealed that isolates from Pernambuco are closely related to Rio de Janeiro isolates. We report a substantial occurrence of MAT1-2 idiomorphs in the metropolitan region of Recife (0:60 ratio; χ2 = 60.000, P < 0.0001). The limited population differentiation and genetic diversity of the isolates from Pernambuco suggest a recent introduction, possibly via a founder effect, from the parental population in Rio de Janeiro. Our findings emphasize the critical importance of molecular surveillance of S. brasiliensis for outbreak response. A comprehensive one-health strategy is mandatory to control the spread of cat-transmitted sporotrichosis driven by S. brasiliensis, encompassing sanitary barriers, quick diagnosis, and treatment.


Subject(s)
Cat Diseases , Sporothrix , Sporotrichosis , Sporotrichosis/transmission , Sporotrichosis/microbiology , Sporotrichosis/veterinary , Sporotrichosis/epidemiology , Cats , Brazil/epidemiology , Sporothrix/genetics , Sporothrix/isolation & purification , Sporothrix/classification , Animals , Cat Diseases/microbiology , Cat Diseases/transmission , Cat Diseases/epidemiology , Molecular Typing , Zoonoses/transmission , Zoonoses/microbiology , Amplified Fragment Length Polymorphism Analysis , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/epidemiology , Genotype , Phylogeny
2.
Mycopathologia ; 189(4): 53, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864961

ABSTRACT

Sporotrichosis is a globally distributed subcutaneous mycosis caused by dimorphic Sporothrix species commonly found in soil, mosses, and decaying plant matter. The lymphocutaneous manifestation, historically associated with occupational activities and sapronotic transmission, has recently been observed to also occur through animal contact, particularly notable in Brazil. We describe a rare case of lymphocutaneous sporotrichosis with simultaneous pulmonary complications resulting from the scratching of a southern three-banded armadillo, Tolypeutes matacus, primarily inhabiting the arid forests of South America's central region. Speciation using multiplex quantitative polymerase chain reaction (qPCR) established the etiological agent as S. schenckii s. str., while amplified fragment length polymorphism (AFLP) analysis unveiled a novel genotype circulating in the Midwest of Brazil. The patient received treatment with itraconazole (200 mg/day) for two months, leading to substantial clinical improvement of cutaneous and pulmonary symptoms. This case highlights the critical role of animal-mediated transmission in sporotrichosis epidemiology, particularly within regions with diverse armadillo species. The unusual epidemiology and genetic characteristics of this case emphasize the need for enhanced awareness and diagnostic vigilance in atypical sporotrichosis presentations.


Subject(s)
Antifungal Agents , Armadillos , Itraconazole , Sporothrix , Sporotrichosis , Animals , Humans , Male , Amplified Fragment Length Polymorphism Analysis , Antifungal Agents/therapeutic use , Armadillos/microbiology , Brazil , Genotype , Itraconazole/therapeutic use , Multiplex Polymerase Chain Reaction , Sporothrix/genetics , Sporothrix/isolation & purification , Sporothrix/classification , Sporotrichosis/microbiology , Sporotrichosis/diagnosis , Sporotrichosis/drug therapy , Sporotrichosis/transmission , Treatment Outcome , Middle Aged
3.
Microorganisms ; 12(1)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38258002

ABSTRACT

This study aimed to characterize 300 Aeromonas spp. strains isolated from 123 ornamental fish of 32 different species presenting with septicemia, skin lesions, and/or eye lesions. Within the 300 strains, 53.0% were identified as A. veronii, 41.3% as A. hydrophila, and 5.7% as A. caviae. Among the six virulence genes investigated, the most frequent were act (90.3%) and aer (79.3%). More than 50% of A. hydrophila strains were positive for all the studied genes. A total of 30 virulence profiles were identified, with the five main profiles identified comprising 75% of strains. Only five strains were negative for all genes and were identified as A. caviae and A. veronii. The antimicrobial susceptibility profile was performed for 234 strains, with sulfonamides presenting more than 50% of the resistance rates. Susceptibility was observed mainly for cephalosporins, aminoglycosides, chloramphenicol and piperacillin-tazobactam. Multidrug resistance was detected in 82.5% of the studied strains, including A. caviae with 100% multidrug resistance, and A. hydrophila with 90.9% multidrug resistance. The SE-AFLP analysis resulted in 66 genotypes of A. hydrophila, 118 genotypes of A. veronii, and 14 genotypes of A. caviae, demonstrating the greater heterogeneity of A. veronii and A. caviae. However, no direct correlation was observed between the genotypes and the strains' origins or virulence and resistance profiles.

4.
J Fungi (Basel) ; 9(8)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37623602

ABSTRACT

Sporotrichosis is a neglected subcutaneous fungal infection that affects humans and animals worldwide caused by species belonging to the genus Sporothrix. This study aims to examine the range of genetic variations, assess molecular epidemiology significance, and explore potential modes of transmission of the Sporothrix species associated with the current sporotrichosis outbreaks in Espírito Santo, Brazil. In this investigation, 262 samples were evaluated, including 142 from humans and 120 from felines, collected between 2016 and 2021. The isolates were identified based on morphological and molecular characteristics. Sexual idiomorphs were determined by mating-type PCR using primers specific to the MAT1-1 and MAT1-2 loci. Amplified fragment length polymorphism (AFLP) was employed to assess the genetic variability of Sporothrix spp. Finally, antifungal susceptibility testing was performed following the CLSI M38-A2 protocol. Of the 142 human samples, 125 were identified as S. brasiliensis and 17 as S. schenckii s. str. The presence of S. brasiliensis was overwhelming (100%) during outbreaks, highlighting the significant role of domestic cats in the emergence of this species. Heterothallism was the only observed mating strategy. However, the MAT1-2 idiomorph was predominant in cases of cat-transmitted sporotrichosis (χ2 = 202.976; p < 0.0001). Our AFLP results show significant intraspecific variability observed among S. brasiliensis isolates in Espírito Santo. Different genotypes forming subgroups within the same population suggest that these isolates do not originate from a single ancestor, indicating multiple emergences. Furthermore, terbinafine was the antifungal with the best results in vitro. However, in clinical practice, itraconazole remains the primary treatment choice. Sporotrichosis continues to advance in the state; therefore, the health system must outline one-health strategies to contain the disease to prevent future epidemics.

5.
Plants (Basel) ; 11(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36501349

ABSTRACT

Sechium edule (Jacq.) Sw. (Cucurbitaceae) is a species native to Mexico and Central America. The collection, characterization, and evaluation of accessions maintained in genebanks is essential for the conservation of this species. However, there are no specific varietal descriptors that differ from those used in a phenetic approach and are adapted to international registration guidelines to help distinguish, improve, cluster, and protect intraspecific variants of common use and those obtained by breeding. Therefore, 65 morphological descriptors (qualitative and quantitative) were evaluated in 133 accessions obtained from Mexico, Guatemala, and Costa Rica located in the National Germplasm Bank of S. edule in Mexico. These characteristics were observed to be phenetically stable for five generations under the same agroclimatic conditions. In addition, an analysis of amplified fragment length polymorphism (AFLP) was applied to 133 samples from a set of 245 accessions. According to the multivariate analysis, 26 of the 65 descriptors evaluated (qualitative and quantitative) enabled differentiation of varieties of S. edule. The AFLP analysis showed a high level of polymorphism and genetic distance between cultivated accessions and their corresponding wild ancestor. The variations in S. edule suggest that the morphological characteristics have differentiated from an essentially derived initial edible variety (ancestral original variety), but unlike other cucurbits, there is no evidence of the ancestral edible for Sechium since the seed is unorthodox and there are no relicts.

6.
Mycoses ; 65(12): 1146-1158, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35869803

ABSTRACT

INTRODUCTION: Chromoblastomycosis is a disease caused by melanized fungi, primarily belonging to the genera Fonsecaea and Cladophialophora, mainly affecting individuals who are occupationally exposed to soil and plant products. This research aimed to determine the clinical, epidemiological and laboratory characteristics of chromoblastomycosis in the state of Mato Grosso, Brazil. MATERIALS AND METHODS: Patients diagnosed with chromoblastomycosis treated at the Júlio Müller University Hospital, Cuiabá, Brazil, from January 2015 to December 2020, whose isolates were preserved in the Research Laboratory of the Faculty of Medicine of the Federal University of Mato Grosso. Isolates were identified by partly sequencing the Internal Transcribed Spacer (ITS) and ß-tubulin (BT2) loci. AFLP fingerprinting was used to explore the genetic diversity. Susceptibility to itraconazole, voriconazole, 5-fluorocytosine, terbinafine and amphotericin B was determined by the broth microdilution technique. RESULTS: Ten patients were included, nine were male (mean age = 64.1 years). Mean disease duration was 8.6 years. Lesions were mainly observed in the lower limbs. Predominant clinical forms were verrucous and scarring. Systemic arterial hypertension and type II diabetes mellitus were the predominant comorbidities. Leprosy was the main concomitant infectious disease. Fonsecaea pedrosoi was the unique aetiological agent identified with moderate genetic diversity (H = 0.3934-0.4527; PIC = 0.3160-0.3502). Antifungal agents with the highest activity were terbinafine, voriconazole and itraconazole. CONCLUSION: Chromoblastomycosis is affecting the poor population in rural and urban areas, mainly related to agricultural activities, with F. pedrosoi being the dominant aetiologic agent. All isolates had low MICs for itraconazole, voriconazole and terbinafine, confirming their importance as therapeutic alternatives for chromoblastomycosis.


Subject(s)
Chromoblastomycosis , Diabetes Mellitus, Type 2 , Humans , Middle Aged , Chromoblastomycosis/drug therapy , Chromoblastomycosis/epidemiology , Chromoblastomycosis/microbiology , Itraconazole/pharmacology , Itraconazole/therapeutic use , Terbinafine/therapeutic use , Voriconazole/therapeutic use , Molecular Epidemiology , Brazil/epidemiology , Amplified Fragment Length Polymorphism Analysis , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use
7.
Stud Mycol ; 100: 100131, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34934463

ABSTRACT

Paracoccidioidomycosis (PCM) is a life-threatening systemic fungal infection acquired after inhalation of Paracoccidioides propagules from the environment. The main agents include members of the P. brasiliensis complex (phylogenetically-defined species S1, PS2, PS3, and PS4) and P. lutzii. DNA-sequencing of protein-coding loci (e.g., GP43, ARF, and TUB1) is the reference method for recognizing Paracoccidioides species due to a lack of robust phenotypic markers. Thus, developing new molecular markers that are informative and cost-effective is key to providing quality information to explore genetic diversity within Paracoccidioides. We report using new amplified fragment length polymorphism (AFLP) markers and mating-type analysis for genotyping Paracoccidioides species. The bioinformatic analysis generated 144 in silico AFLP profiles, highlighting two discriminatory primer pairs combinations (#1 EcoRI-AC/MseI-CT and #2 EcoRI-AT/MseI-CT). The combinations #1 and #2 were used in vitro to genotype 165 Paracoccidioides isolates recovered from across a vast area of South America. Considering the overall scored AFLP markers in vitro (67-87 fragments), the values of polymorphism information content (PIC = 0.3345-0.3456), marker index (MI = 0.0018), effective multiplex ratio (E = 44.6788-60.3818), resolving power (Rp = 22.3152-34.3152), discriminating power (D = 0.5183-0.5553), expected heterozygosity (H = 0.4247-0.4443), and mean heterozygosity (H avp  = 0.00002-0.00004), demonstrated the utility of AFLP markers to speciate Paracoccidioides and to dissect both deep and fine-scale genetic structures. Analysis of molecular variance (AMOVA) revealed that the total genetic variance (65-66 %) was due to variability among P. brasiliensis complex and P. lutzii (PhiPT = 0.651-0.658, P < 0.0001), supporting a highly structured population. Heterothallism was the exclusive mating strategy, and the distributions of MAT1-1 or MAT1-2 idiomorphs were not significantly skewed (1:1 ratio) for P. brasiliensis s. str. (χ2 = 1.025; P = 0.3113), P. venezuelensis (χ2 = 0.692; P = 0.4054), and P. lutzii (χ2 = 0.027; P = 0.8694), supporting random mating within each species. In contrast, skewed distributions were found for P. americana (χ2 = 8.909; P = 0.0028) and P. restrepiensis (χ2 = 4.571; P = 0.0325) with a preponderance of MAT1-1. Geographical distributions confirmed that P. americana, P. restrepiensis, and P. lutzii are more widespread than previously thought. P. brasiliensis s. str. is by far the most widely occurring lineage in Latin America countries, occurring in all regions of Brazil. Our new DNA fingerprint assay proved to be rapid, reproducible, and highly discriminatory, to give insights into the taxonomy, ecology, and epidemiology of Paracoccidioides species, guiding disease-control strategies to mitigate PCM.

8.
Stud Mycol ; 100: 100129, 2021 Sep.
Article in English | MEDLINE | ID: mdl-35027980

ABSTRACT

Sporothrix (Ophiostomatales) comprises species that are pathogenic to humans and other mammals as well as environmental fungi. Developments in molecular phylogeny have changed our perceptions about the epidemiology, host-association, and virulence of Sporothrix. The classical agent of sporotrichosis, Sporothrix schenckii, now comprises several species nested in a clinical clade with S. brasiliensis, S. globosa, and S. luriei. To gain a more precise view of outbreaks dynamics, structure, and origin of genetic variation within and among populations of Sporothrix, we applied three sets of discriminatory AFLP markers (#3 EcoRI-GA/MseI-TT, #5 EcoRI-GA/MseI-AG, and #6 EcoRI-TA/MseI-AA) and mating-type analysis to a large collection of human, animal and environmental isolates spanning the major endemic areas. A total of 451 polymorphic loci were amplified in vitro from 188 samples, and revealed high polymorphism information content (PIC = 0.1765-0.2253), marker index (MI = 0.0001-0.0002), effective multiplex ratio (E = 15.1720-23.5591), resolving power (Rp = 26.1075-40.2795), discriminating power (D = 0.9766-0.9879), expected heterozygosity (H = 0.1957-0.2588), and mean heterozygosity (Havp  = 0.000007-0.000009), demonstrating the effectiveness of AFLP markers to speciate Sporothrix. Analysis using the program structure indicated three genetic clusters matching S. brasiliensis (population 1), S. schenckii (population 2), and S. globosa (population 3), with the presence of patterns of admixture amongst all populations. AMOVA revealed highly structured clusters (PhiPT = 0.458-0.484, P < 0.0001), with roughly equivalent genetic variability within (46-48 %) and between (52-54 %) populations. Heterothallism was the exclusive mating strategy, and the distributions of MAT1-1 or MAT1-2 idiomorphs were not significantly skewed (1:1 ratio) for S. schenckii (χ2 = 2.522; P = 0.1122), supporting random mating. In contrast, skewed distributions were found for S. globosa (χ2 = 9.529; P = 0.0020) with a predominance of MAT1-1 isolates, and regional differences were highlighted for S. brasiliensis with the overwhelming occurrence of MAT1-2 in Rio de Janeiro (χ2 = 14.222; P = 0.0002) and Pernambuco (χ2 = 7.364; P = 0.0067), in comparison to a higher prevalence of MAT1-1 in the Rio Grande do Sul (χ2 = 7.364; P = 0.0067). Epidemiological trends reveal the geographic expansion of cat-transmitted sporotrichosis due to S. brasiliensis via founder effect. These data support Rio de Janeiro as the centre of origin that has led to the spread of this disease to other regions in Brazil. Our ability to reconstruct the source, spread, and evolution of the ongoing outbreaks from molecular data provides high-quality information for decision-making aimed at mitigating the progression of the disease. Other uses include surveillance, rapid diagnosis, case connectivity, and guiding access to appropriate antifungal treatment.

9.
J Infect Dev Ctries ; 14(11): 1314-1319, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33296345

ABSTRACT

INTRODUCTION: Vagococcus spp. is known for its importance as a systemic and zoonotic bacterial pathogen even though it is not often reported in pigs. This is related to the pathogen misidentification due to the lack of usage of more discriminatory diagnostic techniques. Here we present the first report of Vagococcus lutrae in swine and the characterization of Vagococcus fluvialis and Vagococcus lutrae isolated from diseased animals. METHODOLOGY: Between 2012 and 2017, 11 strains with morphological characteristics similar to Streptococcus spp. were isolated from pigs presenting different clinical signs. Bacterial identification was performed by matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry and confirmed by 16S rRNA sequencing and biochemical profile. Strains were further genotyped by single-enzyme amplified fragment length polymorphism (SE-AFLP). Broth microdilution was used to determine the minimal inhibitory concentration of the antimicrobials of veterinary interest. RESULTS: Ten strains were identified as V. fluvialis and one was identified as V. lutrae. The SE-AFLP analysis enabled the species differentiation with specific clustering of all V. fluvialis separately from the V. lutrae strain. Most strains presented growth in the maximum antibiotic concentration values tested for eight of the 10 analyzed antimicrobial classes. CONCLUSIONS: The observed resistance pattern can represent a problem for veterinary and producers in the treatment of diseases associated Vagococcus spp. in swine production. Vagococcus species may also be a risk for pig industry workers. The data described here will be of great value in further understanding the behavior of this pathogen in animal production.


Subject(s)
Enterococcaceae/genetics , Enterococcaceae/pathogenicity , Gram-Positive Bacterial Infections/veterinary , Phenotype , Phylogeny , Amplified Fragment Length Polymorphism Analysis , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Typing Techniques , Brazil/epidemiology , DNA, Bacterial/genetics , Enterococcaceae/drug effects , Enterococcaceae/isolation & purification , Genotype , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/mortality , Microbial Sensitivity Tests , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Swine
10.
Mol Genet Genomics ; 295(4): 837-841, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32300860

ABSTRACT

This work presents a new method and tool to solve a common problem of molecular biologists and geneticists who use molecular markers in their scientific research and developments: curation of sequences. Omic studies conducted by molecular biologists and geneticists usually involve the use of molecular markers. AFLP, cDNA-AFLP, and MSAP are examples of markers that render information at the genomics, transcriptomics, and epigenomics levels, respectively. These three types of molecular markers use adaptors that are the template for PCR amplification. The sequences of the adaptors have to be eliminated for the analysis of the results. Since a large number of sequences are usually obtained in these studies, this clean-up of the data could demand long time and work. To automate this work, an R package, named CleanBSequences, was created that allows the sequences to be curated massively, quickly, without errors and can be used offline. The curating is performed by aligning the forward and/or reverse primers or ends of cloning vectors with the sequences to be removed. After the alignment, new subsequences are generated without biological fragments not desired by the user, i.e., sequences needed by the techniques. In conclusion, the CleanBSequences tool facilitates the work of researchers, reducing time, effort, and working errors. Therefore, the present tool would respond to the problems related to the curation of sequences obtained from the use of some types of molecular markers. In addition to the above, being an open source, CleanBSequences is a flexible tool that has the potential to be used in future improvements to respond to new problems.


Subject(s)
Computational Biology , Genetic Markers/genetics , Molecular Biology/methods , Software , Epigenomics/methods , Genomics/methods , Molecular Sequence Annotation/methods , Sequence Alignment/methods , Sequence Analysis/methods , Transcriptome/genetics
11.
PeerJ ; 8: e8648, 2020.
Article in English | MEDLINE | ID: mdl-32149029

ABSTRACT

CONTEXT: Pinus herrerae and P. luzmariae are endemic to western Mexico, where they cover an area of more than 1 million hectares. Pinus herrerae is also cultivated in field trials in South Africa and South America, because of its considerable economic importance as a source of timber and resin. Seed quality, afforestation success and desirable traits may all be influenced by the presence of hybrid trees in seed stands. AIMS: We aimed to determine the degree of hybridization between P. herrerae and P. luzmariae in seed stands of each species located in the Sierra Madre Occidental, Durango, Mexico. METHODS: AFLP molecular markers from samples of 171 trees across five populations were analyzed with STRUCTURE and NewHybrids software to determine the degree of introgressive hybridization. The accuracy of STRUCTURE and NewHybrids in detecting hybrids was quantified using the software Hybridlab 1.0. Morphological analysis of 131 samples from two populations of P. herrerae and two populations of P. luzmariae was also conducted by Random Forest classification. The data were compared by Principal Coordinate Analysis (PCoA) in GenAlex 6.501. RESULTS: Hybridization between Pinus herrerae and P. luzmariae was observed in all seed stands under study and resulted in enhancement of desirable silvicultural traits in the latter species. In P. luzmariae, only about 16% molecularly detected hybrids correspond to those identified on a morphological basis. However, the morphology of P. herrerae is not consistent with the molecularly identified hybrids from one population and is only consistent with 3.3 of those from the other population. CONCLUSIONS: This is the first report of hybrid vigour (heterosis) in Mexican pines. Information about hybridization and introgression is essential for developing effective future breeding programs, successful establishment of plantations and management of natural forest stands. Understanding how natural hybridization may influence the evolution and adaptation of pines to climate change is a cornerstone to sustainable forest management including adaptive silviculture.

12.
Sci. agric ; 77(2): e20180038, 2020. ilus, tab
Article in English | VETINDEX | ID: biblio-1497839

ABSTRACT

Sugarcane orange rust caused by Puccinia kuehnii has recently become an important disease in sugarcane crops and its spread is causing great concern to growers. In this study, we analyzed spores from symptomatic orange rust sugarcane leaves collected in multiple locations in Cuba in a 4-year-period in order to characterize morphological traits of P. kuehnii, establish an adequate molecular technique to characterize it, and determine its infection court in sugarcane. Orange rust caused by P. kuehnii was confirmed by polymerase chain reaction (PCR) and morphological characterization. AFLP markers detected high diversity in P. kuenhnii samples. Sequencing of rDNA regions, as expected, did not reveal differences and SSR markers designed for P. melanocephala could not be transferred to P. kuehnii. In addition to stomata, entry through prickles was also detected as a new infection court in sugarcane. Although the presence of pustules on the adaxial leaf surface was frequently detected, no clear correlation between this presence and density of stomata and/or prickles was found.


Subject(s)
Fungi , Saccharum/microbiology , Polymerase Chain Reaction
13.
Sci. agric. ; 77(2): e20180038, 2020. ilus, tab
Article in English | VETINDEX | ID: vti-24598

ABSTRACT

Sugarcane orange rust caused by Puccinia kuehnii has recently become an important disease in sugarcane crops and its spread is causing great concern to growers. In this study, we analyzed spores from symptomatic orange rust sugarcane leaves collected in multiple locations in Cuba in a 4-year-period in order to characterize morphological traits of P. kuehnii, establish an adequate molecular technique to characterize it, and determine its infection court in sugarcane. Orange rust caused by P. kuehnii was confirmed by polymerase chain reaction (PCR) and morphological characterization. AFLP markers detected high diversity in P. kuenhnii samples. Sequencing of rDNA regions, as expected, did not reveal differences and SSR markers designed for P. melanocephala could not be transferred to P. kuehnii. In addition to stomata, entry through prickles was also detected as a new infection court in sugarcane. Although the presence of pustules on the adaxial leaf surface was frequently detected, no clear correlation between this presence and density of stomata and/or prickles was found.(AU)


Subject(s)
Saccharum/microbiology , Fungi , Polymerase Chain Reaction
14.
Anaerobe ; 56: 27-33, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30630038

ABSTRACT

Urinary tract infections (UTI) are considered one of the most important diseases of sows due to its close relationship with reproductive problems such as reduced litter size, increase in the rate of return to estrous, vulvar discharge, abortion, mastitis and anestrus. Actinobaculum suis is one of the main agents involved in porcine urinary tract infection and is responsible for the most severe and fatal cases in sows. In the present report, 23 A. suis strains isolated from a sow and boars in Brazil were identified by PCR and further characterized by broth microdilution, molecular typing by pulsed-field gel electrophoresis (PFGE), single-enzyme amplified fragment length polymorphism (SE-AFLP), and whole-genome sequencing. All strains were sensitive to ceftiofur, linezolid, nitrofurantoin, quinupristin-dalfopristin and vancomycin. Ciprofloxacin, daptomycin, lincomycin, erythromycin and tylosin resistance was observed in 100% of tested strains. Tetracycline and tigecycline also presented high resistance rates (87% and 30.4%, respectively). PFGE with eight different restriction enzymes and three programs did not enable strain characterization; however, all strains were typed by SE-AFLP that clustered strains according to their origin, thus proving an effective tool for A. suis genotyping. Whole-genome sequencing and comparative analysis enabled species differentiation from closely related genus. This is the first report of genomic characterization of A. suis.


Subject(s)
Actinomycetaceae/genetics , Actinomycetaceae/isolation & purification , Actinomycetales Infections/veterinary , Genotype , Phenotype , Swine Diseases/microbiology , Actinomycetaceae/classification , Actinomycetaceae/physiology , Actinomycetales Infections/microbiology , Amplified Fragment Length Polymorphism Analysis , Animals , Anti-Bacterial Agents/pharmacology , Brazil , Drug Resistance, Bacterial , Electrophoresis, Gel, Pulsed-Field , Genomics , Microbial Sensitivity Tests , Molecular Typing , Polymerase Chain Reaction , Swine , Whole Genome Sequencing
15.
BMC Res Notes ; 11(1): 725, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30314442

ABSTRACT

BACKGROUND: The genus Lippia comprises 150 species, most of which have interesting medicinal properties. Lippia sidoides (syn. L. origanoides) exhibits strong antimicrobial activity and is included in the phytotherapy program implemented by the Brazilian Ministry of Health. Since species of Lippia are morphologically very similar, conventional taxonomic methods are sometimes insufficient for the unambiguous identification of plant material that is required for the production of certified phytomedicines. Therefore, genetic and chemical analysis with chemotype identification will contribute to a better characterization of Lippia species. METHODS: Amplified Length Polymorphism and Internal Transcribed Spacer molecular markers were applied to determine the plants' genetic variability, and the chemical variability of Lippia spp. was determined by essential oil composition. RESULTS: Amplified Length Polymorphism markers were efficient in demonstrating the intra and inter-specific genetic variability of the genus and in separating the species L. alba, L. lupulina and L. origanoides into distinct groups. Phylogenetic analysis using Amplified Length Polymorphism and markers produced similar results and confirmed that L. alba and L. lupulina shared a common ancestor that differ from L. origanoides. Carvacrol, endo-fenchol and thymol were the most relevant chemical descriptors. CONCLUSION: Based on the phylogenetic analysis it is proposed that L. grata should be grouped within L. origanoides due to its significant genetic similarity. Although Amplified Length Polymorphism and Internal Transcribed Spacer markers enabled the differentiation of individuals, the genotype selection for the production of certified phytomedicines must also consider the chemotype classification that reflects their real medicinal properties.


Subject(s)
Genetic Variation/genetics , Lippia/classification , Lippia/genetics , Phylogeny , Phytotherapy , Brazil
16.
Vet Q ; 38(1): 79-87, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30362902

ABSTRACT

BACKGROUND: Urinary tract infections (UTI) cause severe losses to the swine industry worldwide and uropathogenic Escherichia coli (UPEC) are the main agent isolated from UTI in sows. OBJECTIVE: The aim of this study was to investigate the virulence genes, assess the phylogenetic background, clonal diversity, and the pattern of resistance to antimicrobials in 186 isolates of UPEC isolated from sows in Brazil. MATERIALS AND METHODS: Urine samples from 300 sows of three herds with clinical signs from São Paulo State (Brazil) were screened for UTI; samples with suggestive results were submitted to bacterial isolation. E. coli strains isolated were characterized using disk diffusion technique, polymerase chain reaction and Single-enzyme amplification fragment length polymorphism (SE-AFLP). RESULTS: Virulence genes focH and papC were present in 78.5% and 58% of strains, respectively, followed by cnf1 (23.2%), afa (13.4%), sfa (11.3%), iucD (6.9%), and hlyA (1.6%). No clonal relatedness was found by SE-AFLP. A total of 98% of isolates (182/186) were multidrug resistant, and the highest levels of resistance were to sulfonamides, tetracycline, florfenicol, and ampicillin. Isolates were classified in phylogenetic group B1 (34.4%), followed by D (33.9%), E (30.1%) and A (1.6%). CONCLUSIONS: The data obtained suggest that pigs from clinically affected herds may serve as a reservoir of uropathogenic and multidrug-resistant E. coli strains.


Subject(s)
Escherichia coli Infections/veterinary , Swine Diseases/microbiology , Urinary Tract Infections/veterinary , Uropathogenic Escherichia coli , Animals , Anti-Bacterial Agents/therapeutic use , Brazil , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Escherichia coli Infections/urine , Female , Genetic Variation , Genotype , Swine , Swine Diseases/drug therapy , Swine Diseases/urine , Urinary Tract Infections/microbiology , Urinary Tract Infections/urine , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/isolation & purification , Virulence
17.
Electron. j. biotechnol ; Electron. j. biotechnol;34: 67-75, july. 2018. graf, tab
Article in English | LILACS | ID: biblio-1047367

ABSTRACT

Background: The whole-genome sequences of nine Rhizobium species were evaluated using different in silico molecular techniques such as AFLP-PCR, restriction digest, and AMPylating enzymes. The entire genome sequences were aligned with progressiveMauve and visualized by reconstructing phylogenetic tree using NTSYS pc 2.11X. The "insilico.ehu.es" was used to carry out in silico AFLP-PCR and in silico restriction digest of the selected genomes. Post-translational modification (PTM) and AMPylating enzyme diversity between the proteome of Rhizobium species were determined by novPTMenzy. Results: Slight variations were observed in the phylogeny based on AFLP-PCR and PFGE and the tree based on whole genome. Results clearly demonstrated the presence of PTMs, i.e., AMPylation with the GS-ATasE (GlnE), Hydroxylation, Sulfation with their domain, and Deamidation with their specific domains (AMPylating enzymes) GS-ATasE (GlnE), Fic, and Doc (Phosphorylation); Asparagine_hydroxylase and Collagen_prolyl_lysyl_hydroxylase; Sulfotransferase; and CNF (Cytotoxic Necrotizing Factors), respectively. The results pertaining to PTMs are discussed with regard to functional diversities reported in these species. Conclusions: The phylogenetic tree based on AFLP-PCR was slightly different from restriction endonuclease- and PFGE-based trees. Different PTMs were observed in the Rhizobium species, and the most prevailing type of PTM was AMPylation with the domain GS-ATasE (GlnE). Another type of PTM was also observed, i.e., Hydroxylation and Sulfation, with the domains Asparagine_hydroxylase and Collagen_prolyl_lysyl_hydroxylase and Sulfotransferase, respectively. The deamidation type of PTM was present only in Rhizobium sp. NGR234. How to cite: Qureshi MA, Pervez MT, Babar ME, et al. Genomic comparisons of Rhizobium species using in silico AFLP-PCR, endonuclease restrictions and ampylating enzymes.


Subject(s)
Rhizobium/genetics , Phylogeny , Rhizobium/enzymology , Rhizobium/physiology , Symbiosis , Computer Simulation , DNA Restriction Enzymes , Polymerase Chain Reaction/methods , Sequence Analysis , Proteome , Genomics , Amplified Fragment Length Polymorphism Analysis , Fabaceae/microbiology
18.
Rev. peru. biol. (Impr.) ; 25(3): 259-266, jul.-set. 2018. ilus, tab
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1094324

ABSTRACT

En este presente trabajo, la diversidad genética de 30 morfotipos de papas nativas de Vilcashuamán (Ayacucho) fue evaluada mediante la técnica de polimorfismo de longitud de fragmentos amplificados (AFLP). La extracción de ADN se realizó con el método de CTAB modificado, usando hojas frescas de plantas de cuatro semanas de cultivo en invernadero. Partiendo de 200 mg de tejido vegetal se logró obtener entre 300 a 500 ng/μL de ADN de buena calidad. La digestión enzimática del ADN se realizó utilizando EcoRI y MseI, y se emplearon 12 combinaciones de primers, de las cuales se eligieron las dos combinaciones más polimórficas (E13 - M49 y E38 - M49). El análisis estadístico se realizó con el programa NTSYs 2.10 usando el coeficiente de Simple Matching logrando obtener valores de PIC (índice de contenido polimórfico) de 0.45 y 0.40 para las combinaciones E38 - M49 y E13 - M49, respectivamente. En total se lograron identificar 68 bandas claramente diferenciables, de las cuales el 55.8% fueron bandas polimórficas. El análisis de agrupamiento según el algoritmo UPGMA originó un dendograma con un índice de correlación cofenética de r= 0.7; a un coeficiente de similitud de 0.6; se establecieron ocho grupos genéticos y a un coeficiente de 1 no se encontraron morfotipos duplicados. Los resultados obtenidos demuestran el alto poder informativo del AFLP y la alta variabilidad de las papas nativas estudiadas.


In this article, using the Amplified Fragment Lenght Polymorphism (AFLP) technique, we evaluated the genetic diversity of 30 native potatoes morphotypes from Vilcashuaman, Ayacucho. DNA extraction was done with the modified CTAB method, using fresh leaves of greenhouse plants of two weeks age. From 200 mg of plant tissue, it was posible to obtain between 300 and 500 ng/μLof good quality DNA. The enzymatic digestion of the DNA was carried out using EcoRI and MseI, and 12 combinations of primers were used, from which the two most polymorphic combinations were chosen (E13 - M49 and E38 -M49). The statistical analysis was done with the NTSYs 2.10 program using the Simple Matching coefficient, obtaining values of PIC (polymorphic content index) of 0.45 and 0.40 for the combinations E38 - M49 and E13 - M49, respectively. In total, 68 clearly differentiable bands were identified, of which 55.8% were polymorphic bands. The cluster analysis according to the UPGMA algorithm originated a dendrogram with a cofenetic correlation index of r = 0.7; at a coefficient of similarity of 0.6, eight genetic groups were established and at a coefficient of 1, no duplicate morphotypes were found. The results obtained show the high informative power of the AFLP and the high variability of the native potatoes studied.

19.
Pesqui. vet. bras ; 38(3): 393-399, mar. 2018. tab, graf
Article in English | VETINDEX | ID: vti-19656

ABSTRACT

Arcobacter is an emerging zoonotic pathogen, and the major transmission routes to humans are the handling or consumption of contaminated raw/undercooked food products of animal origin, water and seafood. The isolation and identification of Arcobacter species are not routine in clinical laboratories; therefore, its true incidence in human infections may be underestimated. The present study aimed to isolate and characterize Arcobacter from carcasses and fecal samples collected at swine slaughterhouses and from meat markets in São Paulo State, Brazil. The isolates were identified using multiplex-PCR to differentiate the species and analyzed by single-enzyme amplified fragment length polymorphism (SE-AFLP). Arcobacter spp. were isolated from 73.0% of swine carcasses, 4% of fecal samples and 10% of pork samples. A. butzleri was the most prevalent species identified, followed by A. cryaerophilus. Interestingly, the carcasses presented higher frequency of A. butzleri isolation, whereas only A. cryaerophilus was isolated from fecal samples. SE-AFLP enabled the characterization of A. butzleri and A. cryaerophilus into 51 and 63 profiles, respectively. The great genetic heterogeneity observed for both species corroborates previous reports. This study confirms the necessity for a standard isolation protocol and the improvement of molecular tools to further elucidate Arcobacter epidemiology.(AU)


Arcobacter é um patógeno zoonótico emergente e as principais formas de transmissão para humanos são a manipulação e o consumo de água ou alimentos contaminados crus ou mal cozidos. O isolamento e a identificação das espécies de Arcobacter não fazem parte da rotina dos laboratórios clínicos; dessa forma, a real incidência da infecção em humanos é subestimada. O presente estudo teve o objetivo de isolar e caracterizar Arcobacter de carcaças e amostras de fezes coletadas em dois abatedouros de suínos e de carne suína de dois açougues no Estado de São Paulo, Brasil. As estirpes foram identificadas utilizando multiplex-PCR para diferenciar as espécies e foram analisadas por polimorfismo no comprimento de fragmentos amplificados (SE-AFLP). Arcobacter spp. foi isolado de 73% das carcaças, 4% das amostras de fezes e de 10% das amostras de carne suína avaliadas. A. butzleri foi a espécie mais prevalente, seguida por A. cryaerophilus. As carcaças apresentaram a maior taxa de isolamento de A. butzleri enquanto que apenas A. cryaerophilus foi isolado das amostras de fezes. SE-AFLP possibilitou a caracterização de A. butzleri e A. cryaerophilus em 51 e 63 perfis de bandas, respectivamente. A grande heterogeneidade genética observada para ambas as espécies corrobora estudos previous. Estes resultados confirmam a necessidade de protocolos de isolamento padronizados e o aperfeiçoamento das ferramentas moleculares para aprofundar os conhecimetos sobre epidemiologia das infecções pelo gênero Arcobacter.(AU)


Subject(s)
Animals , Swine/microbiology , Arcobacter/isolation & purification , Arcobacter/genetics , Animal Culling , Commerce
20.
Genet. mol. biol ; Genet. mol. biol;41(1,supl.1): 243-252, 2018. tab
Article in English | LILACS | ID: biblio-892483

ABSTRACT

Abstract Newly hatched caterpillars of the butterfly Heliconius erato phyllis routinely cannibalize eggs. In a manifestation of kin recognition they cannibalize sibling eggs less frequently than unrelated eggs. Previous work has estimated the heritability of kin recognition in H. erato phyllis to lie between 14 and 48%. It has furthermore been shown that the inheritance of kin recognition is compatible with a quantitative model with a threshold. Here we present the results of a preliminary study, in which we tested for associations between behavioral kin recognition phenotypes and AFLP and SSR markers. We implemented two experimental approaches: (1) a cannibalism test using sibling eggs only, which allowed for only two behavioral outcomes (cannibal and non-cannibal), and (2) a cannibalism test using two sibling eggs and one unrelated egg, which allowed four outcomes [cannibal who does not recognize siblings, cannibal who recognizes siblings, "super-cannibal" (cannibal of both eggs), and "super non-cannibal" (does not cannibalize eggs at all)]. Single-marker analyses were performed using χ2 tests and logistic regression with null markers as covariates. Results of the χ2 tests identified 72 associations for experimental design 1 and 73 associations for design 2. Logistic regression analysis of the markers found to be significant in the χ2 test resulted in 20 associations for design 1 and 11 associations for design 2. Experiment 2 identified markers that were more frequently present or absent in cannibals who recognize siblings and super non-cannibals; i.e. in both phenotypes capable of kin recognition.

SELECTION OF CITATIONS
SEARCH DETAIL