Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.820
Filter
1.
Acta Pharmacol Sin ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112770

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) is a major cytosolic DNA sensor that plays a significant role in innate immunity. Upon binding to double stranded DNA (dsDNA), cGAS utilizes GTP and ATP to synthesize the second messenger cyclic GMP-AMP (cGAMP). The cGAMP then binds to the adapter protein stimulator of interferon genes (STING) in the endoplasmic reticulum, resulting in the activation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent induction of type I interferon. An important question is how cGAS distinguishes between self and non-self DNA. While cGAS binds to the phosphate backbone of DNA without discrimination, its activation is influenced by physical features such as DNA length, inter-DNA distance, and mechanical flexibility. This suggests that the recognition of DNA by cGAS may depend on these physical features. In this article we summarize the recent progress in research on cGAS-STING pathway involved in antiviral defense, cellular senescence and anti-tumor response, and focus on DNA recognition mechanisms based on the physical features.

2.
Hum Cell ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115639

ABSTRACT

Developing novel therapies that outperform the existing chemotherapeutic treatments is required for treatment-resistant ovarian clear cell carcinoma. We investigated the antitumor effect of metformin on ovarian clear cell carcinoma, enhancement of the antitumor effect by its combination with chemotherapy, and its molecular regulatory mechanism. First, we evaluated the viability of ovarian clear cell carcinoma lines using the water-soluble tetrazolium-1 assay and found that metformin suppressed cell viability. Cell viability was significantly suppressed by co-treatment with cisplatin and metformin. In contrast, co-treatment with paclitaxel and metformin showed no significant difference in viability compared with the group without metformin. Western blot analysis showed increased phosphorylation of AMP-activated protein kinase in some cell lines and suppressed phosphorylation of the mammalian target of rapamycin in a particular cell line. Flow cytometry analysis revealed a significant increase in the rate of apoptosis in the metformin-treated group and rate of cell cycle arrest at the G2/M phase in a particular cell line. These results indicated that metformin may be effective against cultured ovarian clear cell carcinoma cells, particularly in combination with cisplatin.

3.
Vaccine ; : 126213, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39138071

ABSTRACT

Zika virus (ZIKV) infection remains a global public health problem. After the "Public Health Emergencies of International Concern" declared in February 2016, the incidence of new infections by this pathogen has been decreasing in many areas. However, there is still a likely risk that ZIKV will spread to more countries. To date, there is no vaccine or antiviral drug available to prevent or treat Zika virus infection. In the Zika vaccine development, those based on protein subunits are attractive as a non-replicable platform due to their potentially enhanced safety profile to be used in all populations. However, these vaccines frequently require multiple doses and adjuvants to achieve protective immunity. In this study we show the immunological evaluation of new formulations of the recombinant protein ZEC, which combines regions of domain III of the envelope and the capsid from ZIKV. Two nucleotide-based adjuvants were used to enhance the immunity elicited by the vaccine candidate ZEC. ODN 39M or c-di-AMP was incorporated as immunomodulator into the formulations combined with aluminum hydroxide. Following immunizations in immunocompetent BALB/c mice, the formulations stimulated high IgG antibodies. Although the IgG subtypes suggested a predominantly Th1-biased immune response by the formulation including the ODN 39M, cellular immune responses measured by IFNγ secretion from spleen cells after in vitro stimulations were induced by both immunomodulators. These results demonstrate the capacity of both immunomodulators to enhance the immunogenicity of the recombinant subunit ZEC as a vaccine candidate against ZIKV.

4.
Metab Brain Dis ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133454

ABSTRACT

Pomegranate polyphenol ellagic acid has medicinal potential in neurodegenerative disorders. The advantageous effect of this polyphenol in improving cognition in okadaic acid (OA)-instigated murine model with unraveling some modes of its action was assessed. Rats received ICV okadaic acid (OA) and post-treated with oral ellagic acid for 3 weeks (25 and 100 mg/kg/day). Cognition was analyzed in behavioral tasks besides assessment of oxidative, apoptotic, and inflammatory factors in addition to hippocampal histochemical analysis. Ellagic acid at a dose of 100 mg/kg properly attenuated cognitive abnormalities in novel object recognition (NOR), Y maze, and Barnes maze tests. Additionally, ellagic acid diminished hippocampal changes of malondialdehyde (MDA), protein carbonyl, reactive oxygen species (ROS), glutathione (GSH), glutathione peroxidase, superoxide dismutase (SOD), apoptotic factors caspases 1 and 3, tumor necrosis factor α (TNFα), and acetylcholinesterase (AChE) and beta secretase 1 (BACE 1) besides reversal of AMP-activated protein kinase (AMPK) and hyperphosphorylated tau (p-tau). Moreover, lower glial fibrillary acidic protein (GFAP) and less injury of hippocampal CA1 pyramidal neurons were observed upon ellagic acid. To conclude, neuroprotective potential of ellagic acid was shown which is somewhat attributable to its reversal of oxidative, apoptotic, and neuroinflammatory events in addition to proper regulation of AMPK and p-tau.

5.
BMC Complement Med Ther ; 24(1): 296, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095777

ABSTRACT

BACKGROUND: The fruit of Phyllanthus emblica L., a traditional medicine in China and India, is used to treat diabetes mellitus. Its water extract (WEPE) has demonstrated hypoglycemic effects in diabetic rats, but its mechanisms on glucose utilization and insulin resistance in skeletal muscle remain unclear. Therefore, this study aims to investigate the effects and underlying mechanisms of WEPE on glucose utilization and insulin resistance using C2C12 myotubes. METHODS: Effects of WEPE on glucose uptake, GLUT4 translocation, and AMPK and AKT phosphorylation were investigated in C2C12 myotubes and palmitate-treated myotubes. An AMPK inhibitor and siRNA were used to explore the mechanisms of WEPE. Glucose uptake was determined using a 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose (2-NBDG) uptake assay, and protein expression and GLUT4 translocation were assessed via western blotting. RESULTS: In normal myotubes, WEPE significantly stimulated glucose uptake and GLUT4 translocation to the plasma membrane at concentrations of 125 and 250 µg/mL. This was accompanied by an increase in the phosphorylation of AMPK and its downstream targets. However, both compound C and AMPK siRNA blocked the WEPE-induced GLUT4 translocation and glucose uptake. Moreover, pretreatment with STO-609, a calcium/calmodulin-dependent protein kinase kinase ß (CaMKKß) inhibitor, inhibited WEPE-induced AMPK phosphorylation and attenuated the WEPE-stimulated glucose uptake and GLUT4 translocation. In myotubes treated with palmitate, WEPE prevented palmitate-induced insulin resistance by enhancing insulin-mediated glucose uptake and AKT phosphorylation. It also restored the insulin-mediated translocation of GLUT4 from cytoplasm to membrane. However, these effects of WEPE on glucose uptake and GLUT4 translocation were blocked by pretreatment with compound C. CONCLUSIONS: WEPE significantly stimulated basal glucose uptake though CaMKKß/AMPK pathway and markedly ameliorated palmitate-induced insulin resistance by activating the AMPK pathway in C2C12 myotubes.


Subject(s)
AMP-Activated Protein Kinases , Glucose , Insulin Resistance , Muscle Fibers, Skeletal , Phyllanthus emblica , Plant Extracts , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Animals , Mice , Glucose/metabolism , Plant Extracts/pharmacology , AMP-Activated Protein Kinases/metabolism , Fruit , Glucose Transporter Type 4/metabolism , Cell Line , Palmitates/pharmacology , Palmitic Acid/pharmacology
6.
Mol Immunol ; 173: 100-109, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39094445

ABSTRACT

Antimicrobial peptides (AMPs) are a promising alternative to antibiotics in the fight against multi-drug resistant and immune system-evading bacterial infections. Protegrins are porcine cathelicidins which have been identified in porcine leukocytes. Protegrin-1 is the best characterized family member and has broad antibacterial activity by interacting and permeabilizing bacterial membranes. Many host defense peptides (HDPs) like LL-37 or chicken cathelicidin 2 (CATH-2) have also been shown to have protective biological functions during infections. In this regard, it is interesting to study if Protegrin-1 has the immune modulating potential to suppress unnecessary immune activation by neutralizing endotoxins or by influencing the macrophage functionality in addition to its direct antimicrobial properties. This study showed that Protegrin-1 neutralized lipopolysaccharide- (LPS) and bacteria-induced activation of RAW macrophages by binding and preventing LPS from cell surface attachment. Furthermore, the peptide treatment not only inhibited bacterial phagocytosis by murine and porcine macrophages but also interfered with cell surface and intracellular bacterial survival. Lastly, Protegrin-1 pre-treatment was shown to inhibit the amastigote survival in Leishmania infected macrophages. These experiments describe an extended potential of Protegrin-1's protective role during microbial infections and add to the research towards clinical application of cationic AMPs.

7.
Am J Hum Genet ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39096911

ABSTRACT

Co-observation of a gene variant with a pathogenic variant in another gene that explains the disease presentation has been designated as evidence against pathogenicity for commonly used variant classification guidelines. Multiple variant curation expert panels have specified, from consensus opinion, that this evidence type is not applicable for the classification of breast cancer predisposition gene variants. Statistical analysis of sequence data for 55,815 individuals diagnosed with breast cancer from the BRIDGES sequencing project was undertaken to formally assess the utility of co-observation data for germline variant classification. Our analysis included expected loss-of-function variants in 11 breast cancer predisposition genes and pathogenic missense variants in BRCA1, BRCA2, and TP53. We assessed whether co-observation of pathogenic variants in two different genes occurred more or less often than expected under the assumption of independence. Co-observation of pathogenic variants in each of BRCA1, BRCA2, and PALB2 with the remaining genes was less frequent than expected. This evidence for depletion remained after adjustment for age at diagnosis, study design (familial versus population-based), and country. Co-observation of a variant of uncertain significance in BRCA1, BRCA2, or PALB2 with a pathogenic variant in another breast cancer gene equated to supporting evidence against pathogenicity following criterion strength assignment based on the likelihood ratio and showed utility in reclassification of missense BRCA1 and BRCA2 variants identified in BRIDGES. Our approach has applicability for assessing the value of co-observation as a predictor of variant pathogenicity in other clinical contexts, including for gene-specific guidelines developed by ClinGen Variant Curation Expert Panels.

8.
Article in English | MEDLINE | ID: mdl-39093001

ABSTRACT

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Excessive stimulation of the IP3 signalling pathway has been linked to AF through abnormal calcium handling. However, little is known about the mechanisms involved in this process. We expressed the fluorescence resonance energy transfer (FRET) based cytosolic cAMP sensor EPAC-SH187 in neonatal rat atrial myocytes (NRAMs) and neonatal rat ventricular myocytes (NRVMs). In NRAMs, addition of the α-1 agonist phenylephrine (PE, 3 µM) resulted in a FRET change 21.20 ± 7.43 % and addition of membrane permeant IP3 derivative, 2,3,6-tri-O-Butyryl-myo-IP3(1,4,5)-hexakis(acetoxymethyl)ester (IP3-AM, 20 µM) resulted in a peak of 20.31 ± 6.74 %. These FRET changes imply an increase in cAMP. Prior application of IP3 receptor (IP3R) inhibitors 2-Aminoethyl diphenylborinate (2-APB, 2.5µM) or Xestospongin-C (0.3 µM) significantly inhibited the change in FRET in NRAMs in response to PE. Xestospongin-C (0.3 µM) significantly inhibited the change in FRET in NRAMs in response to IP3-AM. The FRET change in response to PE in NRVMs were not inhibited by 2-APB or Xestospongin-C. Finally, the localisation of cAMP signals was tested by expressing the FRET-based cAMP sensor, AKAP79-CUTie, which targets the intracellular surface of the plasmalemma. We found in NRAMs that PE led to FRET change corresponding to an increase in cAMP that was inhibited by 2-APB and Xestospongin C. These data support further investigation of the pro-arrhythmic nature and components of IP3 induced cAMP signalling to identify potential pharmacological targets.

9.
Atherosclerosis ; 396: 118530, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38972157
10.
Cardiovasc Toxicol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008239

ABSTRACT

Hypertension is a globally prevalent disease, but the pathogenesis remains largely unclear. AMP-activated protein kinase (AMPK) is a nutrition-sensitive signal of cellular energy metabolism, which has a certain influence on the development of hypertension. Previously, we found a down-regulation of the phosphorylated (p-) form of AMPK, and the up-regulation of the angiotensin II type 1 receptor (AT1-R) and that of p-ERK1/2 in the hypothalamic paraventricular nucleus (PVN) of hypertensive rats. However, the exact mechanism underlying the relationship between AMPK and AT1-R in the PVN during hypertension remains unclear. Thus, we hypothesized that AMPK modulates AT1-R through the ERK1/2-NF-κB pathway in the PVN, thereby inhibiting sympathetic nerve activity and improving hypertension. To examine this hypothesis, we employed a renovascular hypertensive animal model developed via two-kidney, one-clip (2K1C) and sham-operated (SHAM). Artificial cerebrospinal fluid (aCSF), used as vehicle, or 5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide (AICAR, an AMPK activator, 60 µg/day) was microinjected bilaterally in the PVN of these rats for 4 weeks. In 2K1C rats, there an increase in systolic blood pressure (SBP) and circulating norepinephrine (NE). Also, the hypertensive rats had lowered expression of p-AMPK and p-AMPK/AMPK, elevated expression of p-ERK1/2, p-ERK1/2/ERK1/2 and AT1-R, increased NF-κB p65 activity in the PVN compared with the levels of these biomarkers in SHAM rats. Four weeks of bilateral PVN injection of AMPK activator AICAR, attenuated the NE level and SBP, increased the expression of p-AMPK and p-AMPK/AMPK, lessened the NF-κB p65 activity, decreased the expression of p-ERK1/2, p-ERK1/2/ERK1/2 and AT1-R in the PVN of 2K1C rats. Data from this study imply that the activation of AMPK within the PVN suppressed AT1-R expression through inhibiting the ERK1/2-NF-κB pathway, decreased the activity of the sympathetic nervous system, improved hypertension.

11.
Nutrients ; 16(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39064719

ABSTRACT

Recently, the incidence of NAFLD has exploded globally, but there are currently no officially approved medications for treating the condition. The regulation of NAFLD through plant-derived active substances has become a new area of interest. Quinoa (Chenopodium quinoa Willd.) has been discovered to contain a large quantity of bioactive compounds. In this study, we established a free fatty acid (FFA)-induced steatosis model and explored the effects of quinoa polyphenol extract (QPE) on the major hallmarks of NAFLD. The results indicated that QPE significantly reduced intracellular triglyceride (TG) and total cholesterol (TC) levels. Additionally, QPE remarkably elevated the levels of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) and lowered levels of malondialdehyde (MDA). Further examination revealed that QPE attenuated intracellular inflammation, which was verified by the reduced levels of pro-inflammatory cytokines. Mechanistically, QPE inhibited fatty acid biosynthesis mainly by targeting de novo lipogenesis (DNL) via the AMPK/SREBP-1c signaling pathway. Moreover, network pharmacology was used to analyze key targets for NAFLD mitigation by ferulic acid (FA), a major component of QPE. Taken together, this study suggests that QPE could ameliorate NAFLD by modulating hepatic lipid metabolism and alleviating oxidative stress and inflammation.


Subject(s)
Chenopodium quinoa , Inflammation , Lipid Metabolism , Non-alcoholic Fatty Liver Disease , Oxidative Stress , Plant Extracts , Polyphenols , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Chenopodium quinoa/chemistry , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Polyphenols/pharmacology , Lipid Metabolism/drug effects , Animals , Inflammation/drug therapy , Inflammation/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Lipogenesis/drug effects , Humans , Mice, Inbred C57BL , Triglycerides/metabolism , Signal Transduction/drug effects , Cholesterol/metabolism , Fatty Acids, Nonesterified/metabolism , Disease Models, Animal
12.
Nutrients ; 16(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39064812

ABSTRACT

Manuka honey (MH) exhibits potential antitumor activity in preclinical models of a number of human cancers. Treatment in vitro with MH at concentrations ranging from 0.3 to 5.0% (w/v) led to significant dose-dependent inhibition of proliferation of human breast cancer MCF-7 cells, but anti-proliferative effects of MH were less pronounced in MDA-MB-231 breast cancer cells. Effects of MH were also tested on non-malignant human mammary epithelial cells (HMECs) at 2.5% w/v, and it was found that MH reduced the proliferation of MCF-7 cells but not that of HMECs. Notably, the antitumor activity of MH was in the range of that exerted by treatment of MCF-7 cells with the antiestrogen tamoxifen. Further, MH treatment stimulated apoptosis of MCF-7 cells in vitro, with most cells exhibiting acute and significant levels of apoptosis that correlated with PARP activation. Additionally, the effects of MH induced the activation of AMPK and inhibition of AKT/mTOR downstream signaling. Treatment of MCF7 cells with increased concentrations of MH induced AMPK phosphorylation in a dose-dependent manner that was accompanied by inhibition of phosphorylation of AKT and mTOR downstream effector protein S6. In addition, MH reduced phosphorylated STAT3 levels in vitro, which may correlate with MH and AMPK-mediated anti-inflammatory properties. Further, in vivo, MH administered alone significantly inhibited the growth of established MCF-7 tumors in nude mice by 84%, resulting in an observable reduction in tumor volume. Our findings highlight the need for further research into the use of natural compounds, such as MH, for antitumor efficacy and potential chemoprevention and investigation of molecular pathways underlying these actions.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Proliferation , Honey , Humans , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Female , Animals , Apoptosis/drug effects , MCF-7 Cells , Cell Proliferation/drug effects , Signal Transduction/drug effects , Mice , Xenograft Model Antitumor Assays , Mice, Nude , Leptospermum/chemistry , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Antineoplastic Agents/pharmacology , STAT3 Transcription Factor/metabolism , Disease Progression , AMP-Activated Protein Kinases/metabolism , Cell Line, Tumor , Phosphorylation/drug effects
13.
Antibiotics (Basel) ; 13(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39061298

ABSTRACT

Capitellacin (1) is a 20-residue antimicrobial ß-hairpin, produced by the marine polychaeta (segmented worms) Capitella teletai. Since its discovery in 2020, only very limited studies have been undertaken to understand capitellacin's structure-activity relationship (SAR). Using fast-flow Fmoc-SPPS, a focused library of capitellacin analogues was prepared to systematically study the influence of the two disulphide bridges on its structure and activity, and their replacement with a vinyl sulphide as a potential bioisostere. Upon studying the resulting peptides' antimicrobial activity and secondary structure, the most terminal disulphide emerged as the most critical element for maintaining both bioactivity and the secondary structure, properties which were demonstrated to be closely interlinked. The removal of the innermost disulphide bridge or disulphide replacement with a vinyl sulphide emerged as strategies with which to tune the activity spectrum, producing selectivity towards E. coli. Additionally, an enantiomeric d-capitellacin analogue revealed mechanistic insights, suggesting that chirality may be an inherent property of capitellacin's bacterial membrane target, or that a hitherto unknown secondary mechanism of action may exist. Additionally, we propose the Alloc protecting group as a more appropriate alternative to the common Dde group during fast-flow Fmoc-SPPS, in particular for short-chain diamino acids.

14.
J Med Food ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058737

ABSTRACT

Ulcerative colitis (UC) is a subtype of inflammatory bowel disease affecting the colon with idiopathic origin. Melinjo endosperm extract (MeE) contains polyphenolic compounds that have antioxidative and anticancer properties. We examined the effect of MeE on inflammation and mucin expression in the colons of UC of mice treated with dextran sulfate sodium (DSS). C57BL/6J male mice were assigned into four categories: control, DSS + 0% MeE, DSS + 0.1% MeE, and DSS + 0.5% MeE. The control group was provided distilled water and a standard chow diet for 4 weeks. In DSS + 0% MeE, DSS + 0.1% MeE, and DSS + 0.5% MeE groups, the mice were treated with MeE for 3 weeks followed by MeE diets and drinking water containing 3% DSS for a week. Macrophage count, the mucus area stained by Alcian blue (AB), the levels of adenosine monophosphate-activated protein kinase (AMPK), nuclear factor-κB (NFκB) p65, and silent information regulator (Sirt) 1 protein expression, as well as proinflammatory mediators and Mucin 2 mRNA expression were assessed. In the DSS + 0% MeE group, the AB-stained areas and Mucin 2 mRNA expression levels were observed to be lower than those of controls. However, the levels in the +0.5% MeE group were significantly increased. Compared with the control group, the macrophage number, the expression of IL-1ß mRNA, and NFκB p65 protein in the DSS + 0% MeE group showed a significant increase. Conversely, these levels were significantly decreased in the +0.5% MeE group. The phosphorylated AMPK and Sirt1 protein levels were upregulated in the +0.5% MeE group. In conclusion, MeE may alleviate UC injury by reducing macrophage infiltration and regulating the AMPK/NFκB/Sirt1 pathway.

15.
J Med Life ; 17(3): 261-272, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39044934

ABSTRACT

Obesity is a global health concern owing to its association with numerous degenerative diseases and the fact that it may lead to early aging. Various markers of aging, including telomere attrition, epigenetic alterations, altered protein homeostasis, mitochondrial dysfunction, cellular senescence, stem cell disorders, and intercellular communication, are influenced by obesity. Consequently, there is a critical need for safe and effective approaches to prevent obesity and mitigate the onset of premature aging. In recent years, intermittent fasting (IF), a dietary strategy that alternates between periods of fasting and feeding, has emerged as a promising dietary strategy that holds potential in counteracting the aging process associated with obesity. This article explores the molecular and cellular mechanisms through which IF affects obesity-related early aging. IF regulates various physiological processes and organ systems, including the liver, brain, muscles, intestines, blood, adipose tissues, endocrine system, and cardiovascular system. Moreover, IF modulates key signaling pathways such as AMP-activated protein kinase (AMPK), sirtuins, phosphatidylinositol 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR), and fork head box O (FOXO). By targeting these pathways, IF has the potential to attenuate aging phenotypes associated with obesity-related early aging. Overall, IF offers promising avenues for promoting healthier lifestyles and mitigating the premature aging process in individuals affected by obesity.


Subject(s)
Aging, Premature , Intermittent Fasting , Obesity , Animals , Humans , Aging , Aging, Premature/prevention & control , Cellular Senescence , Obesity/prevention & control , Signal Transduction
16.
J Bacteriol ; : e0013024, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995039

ABSTRACT

c-di-AMP is an essential second messenger that binds and regulates several proteins of different functions within bacterial cells. Among those, PstA is a structurally conserved c-di-AMP-binding protein, but its function is largely unknown. PstA is structurally similar to PII signal transduction proteins, although it specifically binds c-di-AMP rather than other PII ligands such as ATP and α-ketoglutarate. In Listeria monocytogenes, we found that PstA increases ß-lactam susceptibility at normal and low c-di-AMP levels, but increases ß-lactam resistance upon c-di-AMP accumulation. Examining a PstA mutant defective for c-di-AMP binding, we found the apo form of PstA to be toxic for ß-lactam resistance, and the c-di-AMP-bound form to be beneficial. Intriguingly, a role for PstA in ß-lactam resistance is only prominent in aerobic cultures, and largely diminished under hypoxic conditions, suggesting that PstA function is linked to aerobic metabolism. However, PstA does not control aerobic growth rate, and has a modest influence on the tricarboxylic acid cycle and membrane potential-an indicator of cellular respiration. The regulatory role of PstA in ß-lactam resistance is unrelated to reactive oxygen species or oxidative stress. Interestingly, during aerobic growth, PstA function requires the cytochrome bd oxidase (CydAB), a component of the respiratory electron transport chain. The requirement for CydAB might be related to its function in maintaining a membrane potential, or redox stress response activities. Altogether, we propose a model in which apo-PstA diminishes ß-lactam resistance by interacting with an effector protein, and this activity can be countered by c-di-AMP binding or a by-product of redox stress. IMPORTANCE: PstA is a structurally conserved c-di-AMP-binding protein that is broadly present among Firmicutes bacteria. Furthermore, PstA binds c-di-AMP at high affinity and specificity, indicating an important role in the c-di-AMP signaling network. However, the molecular function of PstA remains elusive. Our findings reveal contrasting roles of PstA in ß-lactam resistance depending on c-di-AMP-binding status. We also define physiological conditions for PstA function during aerobic growth. Future efforts can exploit these conditions to identify PstA interaction partners under ß-lactam stress.

17.
Am J Hypertens ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023012

ABSTRACT

BACKGROUND: Hypertension may result in atrial fibrillation (AF) and lipid metabolism disorders. The Sirtuins3 (SIRT3) / AMP-activated protein kinase (AMPK) signaling pathway has the capacity to regulate lipid metabolism disorders and the onset of AF. We hypothesize that the SIRT3/AMPK signaling pathway suppresses lipid metabolism disorders, thereby mitigating salt-sensitive hypertension (SSHT)-induced susceptibility to AF. METHODS: The study involved 7-week-old male Dahl salt-sensitive that were fed either high-salt diet (8% NaCl; DSH group) or normal diet (0.3% NaCl; DSN group). Then DSH group were administered either oral metformin (MET, an AMPK agonist) or intraperitoneal injection of Honokiol (HK, a SIRT3 agonist). This experimental model allowed for the measurement of SBP, the expression levels of lipid metabolism-related biomarker, pathological examination of atrial fibrosis and lipid accumulation, as well as AF inducibility and AF duration. RESULTS: DSH decrease SIRT3, phosphorylation-AMPK and VLCAD expression, increased FASN and FABP4 expression and concentrations of FFA and TG, atrial fibrosis and lipid accumulation in atrial tissue, enhanced level of SBP, promoted AF induction rate and prolonged AF duration, which are blocked by MET and HK. Our results also showed that the degree of atrial fibrosis was negatively correlated with VLCAD expression, but positively correlated with the expression of FASN and FABP4. CONCLUSIONS: We have confirmed that high-salt diet can result in hypertension, associated atrial tissue lipid metabolism dysfunction. This condition is linked to the inhibition of the SIRT3/AMPK signaling pathway, which plays a significant role in the progression of susceptibility to AF in SSHT rats.

18.
J Cell Physiol ; : e31366, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958520

ABSTRACT

Autophagy is a lysosome-mediated self-degradation process of central importance for cellular quality control. It also provides macromolecule building blocks and substrates for energy metabolism during nutrient or energy deficiency, which are the main stimuli for autophagy induction. However, like most biological processes, autophagy itself requires ATP, and there is an energy threshold for its initiation and execution. We here present the first comprehensive review of this often-overlooked aspect of autophagy research. The studies in which ATP deficiency suppressed autophagy in vitro and in vivo were classified according to the energy pathway involved (oxidative phosphorylation or glycolysis). A mechanistic insight was provided by pinpointing the critical ATP-consuming autophagic events, including transcription/translation/interaction of autophagy-related molecules, autophagosome formation/elongation, autophagosome fusion with the lysosome, and lysosome acidification. The significance of energy-dependent fine-tuning of autophagic response for preserving the cell homeostasis, and potential implications for the therapy of cancer, autoimmunity, metabolic disorders, and neurodegeneration are discussed.

19.
Biomedicines ; 12(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39062020

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by excessive fat accumulation in the liver. Intracellular oxidative stress induced by lipid accumulation leads to various hepatocellular injuries including fibrosis. However, no effective method for mitigating MASLD without substantial side effects currently exists. Molecular hydrogen (H2) has garnered attention due to its efficiency in neutralizing harmful reactive oxygen species (ROS) and its ability to penetrate cell membranes. Some clinical evidence suggests that H2 may alleviate fatty liver disease, but the precise molecular mechanisms, particularly the regulation of lipid droplet (LD) metabolism, remain unclear. This study utilized an in vitro model of hepatocyte lipid accumulation induced by free fatty acids (FFAs) to replicate MASLD in HepG2 cells. The results demonstrated a significant increase in LD accumulation due to elevated FFA levels. However, the addition of hydrogen-rich water (HRW) effectively reduced LD accumulation. HRW decreased the diameter of LDs and reduced lipid peroxidation and FFA-induced oxidative stress by activating the AMPK/Nrf2/HO-1 pathway. Overall, our findings suggest that HRW has potential as an adjunctive supplement in managing fatty liver disease by reducing LD accumulation and enhancing antioxidant pathways, presenting a novel strategy for impeding MASLD progression.

20.
bioRxiv ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39071414

ABSTRACT

Persistent hyperactivity of nociceptors is known to contribute significantly to long-lasting sensitization and ongoing pain in many clinical conditions. It is often assumed that nociceptor hyperactivity is mainly driven by continuing stimulation from inflammatory mediators. We have tested an additional possibility: that persistent increases in excitability promoting hyperactivity can be induced by a prototypical cellular signaling pathway long known to induce late-phase long-term potentiation (LTP) of synapses in brain regions involved in memory formation. This cAMP-PKA-CREB-gene transcription-protein synthesis pathway was tested using whole-cell current clamp methods on small dissociated sensory neurons (primarily nociceptors) from dorsal root ganglia (DRGs) excised from previously uninjured ("naïve") rats. Six-hour treatment with the specific Gαs-coupled 5-HT4 receptor agonist, prucalopride, or with the adenylyl cyclase activator, forskolin, induced long-term hyperexcitability (LTH) in DRG neurons that manifested 12-24 hours later as action potential (AP) discharge (ongoing activity, OA) during artificial depolarization to -45 mV, a membrane potential that is normally subthreshold for AP generation. Prucalopride treatment also induced significant long-lasting depolarization of resting membrane potential (from -69 to -66 mV), enhanced depolarizing spontaneous fluctuations (DSFs) of membrane potential, and indications of reduced AP threshold and rheobase. LTH was prevented by co-treatment of prucalopride with inhibitors of PKA, CREB, gene transcription, and protein synthesis. As in the induction of synaptic memory, many other cellular signals are likely to be involved. However, the discovery that this prototypical memory induction pathway can induce nociceptor LTH, along with reports that cAMP signaling and CREB activity in DRGs can induce hyperalgesic priming, suggest that early, temporary, cAMP-induced transcriptional and translational mechanisms can induce nociceptor LTH that might last for long periods. An interesting possibility is that these mechanisms can also be reactivated by re-exposure to inflammatory mediators such as serotonin during subsequent challenges to bodily integrity, "reconsolidating" the cellular memory and thereby extending the duration of persistent nociceptor hyperexcitability.

SELECTION OF CITATIONS
SEARCH DETAIL