Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 851
Filter
1.
Neurosci Bull ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954270

ABSTRACT

The CC chemokine ligand 2 (CCL2, also known as MCP-1) and its cognate receptor CCR2 have well-characterized roles in chemotaxis. CCL2 has been previously shown to promote excitatory synaptic transmission and neuronal excitability. However, the detailed molecular mechanism underlying this process remains largely unclear. In cultured hippocampal neurons, CCL2 application rapidly upregulated surface expression of GluA1, in a CCR2-dependent manner, assayed using SEP-GluA1 live imaging, surface GluA1 antibody staining, and electrophysiology. Using pharmacology and reporter assays, we further showed that CCL2 upregulated surface GluA1 expression primarily via Gαq- and CaMKII-dependent signaling. Consistently, using i.p. injection of lipopolysaccharide to induce neuroinflammation, we found upregulated phosphorylation of S831 and S845 sites on AMPA receptor subunit GluA1 in the hippocampus, an effect blocked in Ccr2-/- mice. Together, these results provide a mechanism through which CCL2, and other secreted molecules that signal through G-protein coupled receptors, can directly regulate synaptic transmission.

2.
Mol Neurobiol ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073529

ABSTRACT

Parkinson's disease (PD), an age-associated neurodegenerative motor disorder, is associated with dementia and cognitive decline. However, the precise molecular insight into PD-induced cognitive decline is not fully understood. Here, we have investigated the possible alterations in the expression of glutamate receptor and its trafficking/scaffolding/regulatory proteins underlying the memory formation and neuroprotective effects of a specialized Bacopa monnieri extract, CDRI-08 (BME) in the hippocampus of the rotenone-induced PD mouse model. Our Western blotting and qRT-PCR data reveal that the PD-induced recognition memory decline is associated with significant upregulation of the AMPA receptor subunit GluR1 and downregulation of GluR2 subunit genes in the hippocampus of rotenone-affected mice as compared to the vehicle control. Further, expressions of the trafficking proteins are significantly upregulated in the hippocampus of rotenone-affected mice compared to the vehicle control. Our results also reveal that the above alterations in the hippocampus are associated with similar expression patterns of total CREB, pCREB, and BDNF. BME (CDRI-08, 200 mg/kg BW) reverses the expression of AMPA receptor subunits, their trafficking proteins differentially, and the transcriptional modulatory proteins depending on whether the BME treatment was given before or after the rotenone treatment. Our data suggest that expression of the above genes is significantly reversed in the BME pre-treated mice subjected to rotenone treatment towards their levels in the control mice compared to its treatment after rotenone administration. Our results provide the possible molecular basis underlying the rotenone-induced recognition memory decline, conditions mimicking the PD symptoms in mouse model and neuroprotective action of bacoside A and bacoside B (58%)-enriched Bacopa monnieri extract (BME) in the hippocampus.

3.
Mol Brain ; 17(1): 35, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858726

ABSTRACT

The brain responds to experience through modulation of synaptic transmission, that is synaptic plasticity. An increase in the strength of synaptic transmission is manifested as long-term potentiation (LTP), while a decrease in the strength of synaptic transmission is expressed as long-term depression (LTD). Most of the studies of synaptic plasticity have been carried out by induction via electrophysiological stimulation. It is largely unknown in which behavioural tasks such synaptic plasticity occurs. Moreover, some stimuli can induce both LTP and LTD, thus making it difficult to separately study the different forms of synaptic plasticity. Two studies have shown that an aversive memory task - inhibitory avoidance learning and contextual fear conditioning - physiologically and selectively induce LTP and an LTP-like molecular change, respectively, in the hippocampus in vivo. Here, we show that a non-aversive behavioural task - exploration of new space - physiologically and selectively elicits a biochemical change in the hippocampus that is a hallmark of LTP. Specifically, we found that exploration of new space induces an increase in the phosphorylation of GluA1(Ser831), without affecting the phosphorylation of GluA1(Ser845), which are biomarkers of early-LTP and not NMDAR-mediated LTD. We also show that exploration of new space engenders the phosphorylation of the translational regulator S6K and the expression of Arc, which are features of electrophysiologically-induced late-LTP in the hippocampus. Therefore, our results show that exploration of new space is a novel non-aversive behavioural paradigm that elicits molecular changes in vivo that are analogous to those occurring during early- and late-LTP, but not during NMDAR-mediated LTD.


Subject(s)
Cytoskeletal Proteins , Hippocampus , Long-Term Potentiation , Nerve Tissue Proteins , Receptors, AMPA , Animals , Long-Term Potentiation/physiology , Phosphorylation , Hippocampus/metabolism , Hippocampus/physiology , Receptors, AMPA/metabolism , Male , Nerve Tissue Proteins/metabolism , Cytoskeletal Proteins/metabolism , Exploratory Behavior/physiology , Serine/metabolism
4.
Article in English | MEDLINE | ID: mdl-38842699

ABSTRACT

RATIONALE: Alzheimer's disease (AD), an age-dependent devastating neuropsychiatric disorder, is a leading cause of learning, memory and intellectual disabilities. Current therapeutic approaches for the amelioration of the anomalies of AD are not effective. OBJECTIVE: In the present study, the molecular mechanisms underlying sporadic AD (sAD), the memory related behavioral analysis and neuroprotective effects of Ellagic acid (EA) were investigated. METHOD: sAD mouse model was developed by intracerebroventricular (ICV) injection of Streptozotocin (STZ). The efficacy of EA, a naturally occurring polyphenol, in amelioration of anomalies associated with sAD was assessed. EA was administered once daily for 28 days at a dose of 75 mg/kg body weight followed by neurobehavioral, biochemical, molecular and neuronal count analysis to delineate the mode of action of EA. RESULT: The ICV injection of STZ in mice significantly increased the expression of AD biomarkers in addition to enhanced oxidative stress. A decline in the discrimination index in Novel Object Recognition Test was observed indicating the compromise of recognition memory in AD. Studies on the expression of genes involved in synaptic plasticity reveal the dysregulation of the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of the glutamate and its scaffolding proteins in the postsynaptic density and thereby synaptic plasticity in AD. ICV-STZ led to significant upregulation of apoptotic markers which led to decrease in neuronal density of the cerebral cortex. EA significantly reversed the above and improved anomalies of sAD. CONCLUSION: EA was observed to profoundly modulate the genes involved in AD pathophysiology, restored antioxidant enzymes activity, reduced lipid peroxidation and neuronal loss in the sAD brain. Further, EA was observed to effectively modulate the genes involved in apoptosis and synaptic plasticity. Therefore, EA possesses promising anti-AD properties, which may improve AD-associated anomalies by modulating synaptic plasticity via AMPAR signaling.

5.
J Labelled Comp Radiopharm ; 67(9): 324-329, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38845124

ABSTRACT

A new automated radiosynthesis of [11C]2-(2,6-difluoro-4-((2-(N-methylphenylsulfonamido)ethyl)thio)phenoxy)acetamide ([11C]K2), a radiopharmaceutical for the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, is reported. Although manual syntheses have been described, these are unsuitable for routine production of larger batches of [11C]K2 for (pre)clinical PET imaging applications. To meet demands for the imaging agent from our functional neuroimaging collaborators, herein, we report a current good manufacturing practice (cGMP)-compliant synthesis of [11C]K2 using a commercial synthesis module. The new synthesis is fully automated and has been validated for clinical use. The total synthesis time is 33 min from end of bombardment, and the production method provides 2.66 ± 0.3 GBq (71.9 ± 8.6 mCi) of [11C]K2 in 97.7 ± 0.5% radiochemical purity and 754.1 ± 231.5 TBq/mmol (20,382.7 ± 6256.1 Ci/mmol) molar activity (n = 3). Batches passed all requisite quality control testing confirming suitability for clinical use.


Subject(s)
Acetamides , Carbon Radioisotopes , Positron-Emission Tomography , Radiopharmaceuticals , Receptors, AMPA , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Carbon Radioisotopes/chemistry , Acetamides/chemical synthesis , Acetamides/chemistry , Receptors, AMPA/metabolism , Radiochemistry/methods , Automation , Chemistry Techniques, Synthetic , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
6.
Phytomedicine ; 131: 155802, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852473

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a serious neurodegenerative disease and brings a serious burden to society and families. Due to lack of effective drugs for the treatment of AD, it's urgent to develop new and effective drug for the treatment of AD. PURPOSE: The study aimed to investigate the potential of Zexieyin formula (ZXYF), a Chinese medicine formula, for the treatment of AD and its potential mechanism of action. METHODS: We used chronic scopolamine (SCOP) induction mice model and APP/PS1 mice to reveal and confirm ZXYF for the treatment of AD with donepezil (DON) as a positive reference. The learning and memory function were detected by morris water maze test (MWM) and y-maze test. Moreover, western blot and immunofluorescence were used to detect the molecular mechanism of ZXYF for the alleviation of AD in hippocampus. Lastly, pharmacological technology was applied to evaluate AMPA receptor involved in the role of ZXYF in the treatment of AD. RESULTS: The results showed that ZXYF could improve memory and learning deficits both in two AD models including scopolamine (SCOP)-induced mice model and APP/PS1mice. Moreover, ZXYF or not DON increased expressions of BrdU/DCX and Ki67 positive cells in dentate gyrus (DG), up-regulated the levels of AMPA subunit type (GluA1) and PKA in hippocampus in SCOP-induced mice model, although ZXYF and DON activated CaMKII, CaMKII-phosphorylation, CREB, CREB-phosphorylation and PSD95 in hippocampus in SCOP-induced mice model. ZXYF also activated CaMKII, CaMKII-phosphorylation and GluA1 in HT22 cells. Furthermore, transient inhibiting AMPA receptor was capable of blocking the effects of ZXYF to treat AD in MWM and suppressing the number of BrdU/DCX positive cells increased by ZXYF in DG in SCOP-induced mice model, but had no effect on the alteration of Ki67 positive cells. CONCLUSION: ZXYF had the therapeutic effects on AD-treatment, which activated CaMKII to promote AMPA receptor (GluA1) and subsequently up-regulated PKA/CREB signaling to facilitate neurogenesis to achieve enhanced postsynaptic protein.


Subject(s)
Alzheimer Disease , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Disease Models, Animal , Drugs, Chinese Herbal , Hippocampus , Neurogenesis , Neuronal Plasticity , Receptors, AMPA , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/chemically induced , Receptors, AMPA/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Drugs, Chinese Herbal/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Neurogenesis/drug effects , Mice , Male , Neuronal Plasticity/drug effects , Scopolamine , Mice, Transgenic , Maze Learning/drug effects , Donepezil/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Memory/drug effects , Mice, Inbred C57BL
7.
Mol Autism ; 15(1): 28, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877552

ABSTRACT

BACKGROUND: Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause a severe neurological disorder characterised by early-onset epileptic seizures, autism and intellectual disability (ID). Impaired hippocampal function has been implicated in other models of monogenic forms of autism spectrum disorders and ID and is often linked to epilepsy and behavioural abnormalities. Many individuals with CDKL5 deficiency disorder (CDD) have null mutations and complete loss of CDKL5 protein, therefore in the current study we used a Cdkl5-/y rat model to elucidate the impact of CDKL5 loss on cellular excitability and synaptic function of CA1 pyramidal cells (PCs). We hypothesised abnormal pre and/or post synaptic function and plasticity would be observed in the hippocampus of Cdkl5-/y rats. METHODS: To allow cross-species comparisons of phenotypes associated with the loss of CDKL5, we generated a loss of function mutation in exon 8 of the rat Cdkl5 gene and assessed the impact of the loss of CDLK5 using a combination of extracellular and whole-cell electrophysiological recordings, biochemistry, and histology. RESULTS: Our results indicate that CA1 hippocampal long-term potentiation (LTP) is enhanced in slices prepared from juvenile, but not adult, Cdkl5-/y rats. Enhanced LTP does not result from changes in NMDA receptor function or subunit expression as these remain unaltered throughout development. Furthermore, Ca2+ permeable AMPA receptor mediated currents are unchanged in Cdkl5-/y rats. We observe reduced mEPSC frequency accompanied by increased spine density in basal dendrites of CA1 PCs, however we find no evidence supporting an increase in silent synapses when assessed using a minimal stimulation protocol in slices. Additionally, we found no change in paired-pulse ratio, consistent with normal release probability at Schaffer collateral to CA1 PC synapses. CONCLUSIONS: Our data indicate a role for CDKL5 in hippocampal synaptic function and raise the possibility that altered intracellular signalling rather than synaptic deficits contribute to the altered plasticity. LIMITATIONS: This study has focussed on the electrophysiological and anatomical properties of hippocampal CA1 PCs across early postnatal development. Studies involving other brain regions, older animals and behavioural phenotypes associated with the loss of CDKL5 are needed to understand the pathophysiology of CDD.


Subject(s)
Disease Models, Animal , Long-Term Potentiation , Protein Serine-Threonine Kinases , Receptors, AMPA , Receptors, N-Methyl-D-Aspartate , Spasms, Infantile , Animals , Male , Rats , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/physiopathology , Epileptic Syndromes/genetics , Epileptic Syndromes/metabolism , Excitatory Postsynaptic Potentials , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/metabolism , Genetic Diseases, X-Linked/physiopathology , Hippocampus/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Receptors, AMPA/metabolism , Receptors, AMPA/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Spasms, Infantile/genetics , Spasms, Infantile/metabolism , Synapses/metabolism
8.
Biochem Biophys Res Commun ; 722: 150074, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38805785

ABSTRACT

Genetic knockout and pharmaceutical inhibition of the NLRP3 inflammasome enhances the extinction of contextual fear memory, which is attributed to its role in neuronal and synaptic dysregulation, concurrent with neurotransmitter function disturbances. This study aimed to determine whether NLRP3 plays a role in generalizing fear via the inflammatory axis. We established the NLRP3 KO mice model, followed by behavioral and biochemical analyses. The NLRP3 KO mice displayed impaired fear generalization, lower neuroinflammation levels, and dysregulated neurotransmitter function. Additionally, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, but not the inhibition of NMDA or 5-HT2C receptors, resulted in fear generalization in NLRP3 KO mice because TAT-GluA2 3Y, but not SB242084 and D-cycloserine, treated blocked NLRP3 deprivation effects on fear generalization. Thus, global knockout of NLRP3 is associated with aberrant fear generalization, possibly through AMPA receptor signaling.


Subject(s)
Fear , NLR Family, Pyrin Domain-Containing 3 Protein , Receptors, AMPA , Animals , Male , Mice , Fear/physiology , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , Receptors, AMPA/metabolism , Receptors, AMPA/genetics
9.
Biochem Pharmacol ; : 116302, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38763261

ABSTRACT

Spinal cord injury (SCI) afflicts millions of individuals globally. There are few therapies available to patients. Ascending and descending excitatory glutamatergic neural circuits in the central nervous system are disrupted by SCI, making α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) a potential therapeutic drug target. Emerging research in preclinical models highlights the involvement of AMPARs in vital processes following SCI including breathing, pain, inflammation, bladder control, and motor function. However, there are no clinical trial data reported in this patient population to date. No work on the role of AMPA receptors in sexual dysfunction after SCI has been disclosed. Compounds with selective antagonist and potentiating effects on AMPA receptors have benefit in animal models of SCI, with antagonists generally showing protective effects early after injury and potentiators (ampakines) producing improved breathing and bladder function. The role of AMPARs in pathophysiology and recovery after SCI depends upon the time post injury, and the timing of AMPAR augmentation or antagonism. The roles of inflammation, synaptic plasticity, sensitization, neurotrophic factors, and neuroprotection are considered in this context. The data summarized and discussed in this paper document proof of principle and strongly encourage additional studies on AMPARs as novel gateways to therapeutic benefit for patients suffering from SCI. The availability of both AMPAR antagonists such as perampanel and AMPAR allosteric modulators (i.e., ampakines) such as CX1739, that have been safely administered to humans, provides an expedited means of clinical inquiry for possible therapeutic advances.

10.
ACS Chem Neurosci ; 15(11): 2334-2349, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38747411

ABSTRACT

Parkinson's disease (PD) is a significant health issue because it gradually damages the nervous system. α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors play a significant role in the development of PD. The current investigation employed hybrid benzodioxole-propanamide (BDZ-P) compounds to get information on AMPA receptors, analyze their biochemical and biophysical properties, and assess their neuroprotective effects. Examining the biophysical characteristics of all the subunits of the AMPA receptor offers insights into the impact of BDZ-P on the desensitization and deactivation rate. It demonstrates a partial improvement in the locomotor capacities in a mouse model of Parkinson's disease. In addition, the in vivo experiment assessed the locomotor activity by utilizing the open-field test. Our findings demonstrated that BDZ-P7 stands out with its remarkable potency, inhibiting the GluA2 subunit nearly 8-fold with an IC50 of 3.03 µM, GluA1/2 by 7.5-fold with an IC50 of 3.14 µM, GluA2/3 by nearly 7-fold with an IC50 of 3.19 µM, and GluA1 by 6.5-fold with an IC50 of 3.2 µM, significantly impacting the desensitization and deactivation rate of the AMPA receptor. BDZ-P7 showed an in vivo impact of partially reinstating locomotor abilities in a mouse model of PD. The results above suggest that the BDZ-P7 compounds show great promise as top contenders for the development of novel neuroprotective therapies.


Subject(s)
Neuroprotective Agents , Receptors, AMPA , Receptors, AMPA/metabolism , Receptors, AMPA/drug effects , Animals , Neuroprotective Agents/pharmacology , Mice , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Mice, Inbred C57BL , Male , Humans , Disease Models, Animal
11.
Cureus ; 16(4): e57654, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38707115

ABSTRACT

Borderline personality disorder (BPD) and treatment-resistant depression (TRD) are common mental disorders that are challenging to treat. Ketamine is an N-methyl-D-aspartate receptor antagonist that has shown promise as a rapid-acting antidepressant when administered intravenously. BPD symptoms have also been demonstrated to improve with repeated intravenous administration of ketamine, and a single case report described improvement in BPD following the intranasal administration of esketamine. We present a case report of a woman with BPD and TRD who responded to treatment with very low-dose sublingual ketamine. Very low-dose sublingual ketamine may be effective for the treatment of psychiatric disorders such as BPD and/or comorbid TRD.

12.
Mol Neurobiol ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727976

ABSTRACT

A reduction in AMPA receptor (AMPAR) expression and weakened synaptic activity is early cellular phenotypes in Alzheimer's disease (AD). However, the molecular processes leading to AMPAR downregulation are complex and remain less clear. Here, we report that the salt inducible kinase SIK1 interacts with AMPARs, leading to a reduced accumulation of AMPARs at synapses. SIK1 protein level is sensitive to amyloid beta (Aß) and shows a marked increase in the presence of Aß and in AD brains. In neurons, Aß incubation causes redistribution of SIK1 to synaptic sites and enhances SIK1-GluA1 association. SIK1 function is required for Aß-induced AMPAR reduction. Importantly, in 3xTG AD mice, knockdown of SIK1 in the brain leads to restoration of AMPAR expression and a rescue of the cognitive deficits. These findings indicate an important role for SIK1 in meditating the cellular and functional pathology in AD.

13.
Bioessays ; 46(7): e2400006, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38693811

ABSTRACT

Long-term potentiation (LTP) of excitatory synapses is a leading model to explain the concept of information storage in the brain. Multiple mechanisms contribute to LTP, but central amongst them is an increased sensitivity of the postsynaptic membrane to neurotransmitter release. This sensitivity is predominantly determined by the abundance and localization of AMPA-type glutamate receptors (AMPARs). A combination of AMPAR structural data, super-resolution imaging of excitatory synapses, and an abundance of electrophysiological studies are providing an ever-clearer picture of how AMPARs are recruited and organized at synaptic junctions. Here, we review the latest insights into this process, and discuss how both cytoplasmic and extracellular receptor elements cooperate to tune the AMPAR response at the hippocampal CA1 synapse.


Subject(s)
Long-Term Potentiation , Receptors, AMPA , Synapses , Receptors, AMPA/metabolism , Animals , Humans , Synapses/metabolism , Synaptic Transmission/physiology , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology
14.
Curr Opin Struct Biol ; 87: 102833, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38733862

ABSTRACT

The ionotropic glutamate receptors (iGluRs) are comprised of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), N-methyl-d-aspartate receptor, kainate, and delta subtypes and are pivotal in neuronal plasticity. Recent structural studies on AMPA receptors reveal intricate conformational changes during activation and desensitization elucidating the steps from agonist binding to channel opening and desensitization. Additionally, interactions with auxiliary subunits, including transmembrane AMPA-receptor regulatory proteins, germ-cell-specific gene 1-like protein, and cornichon homologs, intricately modulate AMPA receptors. We discuss the recent high-resolution structures of these complexes that unveil stoichiometry, subunit positioning, and differences in specific side-chain interactions that influence these functional modulations.


Subject(s)
Receptors, AMPA , Receptors, AMPA/metabolism , Receptors, AMPA/chemistry , Humans , Animals , Ion Channel Gating , Protein Conformation , Protein Subunits/chemistry , Protein Subunits/metabolism , Models, Molecular
15.
Int Immunopharmacol ; 133: 112080, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38613882

ABSTRACT

Myocardial infarction leads to myocardial inflammation and apoptosis, which are crucial factors leading to heart failure and cardiovascular dysfunction, eventually resulting in death. While the inhibition of AMPA receptors mitigates inflammation and tissue apoptosis, the effectiveness of this inhibition in the pathophysiological processes of myocardial infarction remains unclear. This study investigated the role of AMPA receptor inhibition in myocardial infarction and elucidated the underlying mechanisms. This study established a myocardial infarction model by ligating the left anterior descending branch of the coronary artery in Sprague-Dawley rats. The findings suggested that injecting the AMPA receptor antagonist NBQX into myocardial infarction rats effectively alleviated cardiac inflammation, myocardial necrosis, and apoptosis and improved their cardiac contractile function. Conversely, injecting the AMPA receptor agonist CX546 into infarcted rats exacerbated the symptoms and tissue damage, as reflected by histopathology. This agonist also stimulated the TLR4/NF-κB pathway, further deteriorating cardiac function. Furthermore, the investigations revealed that AMPA receptor inhibition hindered the nuclear translocation of P65, blocking its downstream signaling pathway and attenuating tissue inflammation. In summary, this study affirmed the potential of AMPA receptor inhibition in countering inflammation and tissue apoptosis after myocardial infarction, making it a promising therapeutic target for mitigating myocardial infarction.


Subject(s)
Apoptosis , Myocardial Infarction , Receptors, AMPA , Signal Transduction , Animals , Humans , Male , Rats , Apoptosis/drug effects , Disease Models, Animal , Inflammation/drug therapy , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Myocardium/pathology , Myocardium/metabolism , NF-kappa B/metabolism , Rats, Sprague-Dawley , Receptors, AMPA/antagonists & inhibitors , Receptors, AMPA/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/antagonists & inhibitors
16.
J Chem Neuroanat ; 137: 102417, 2024 04.
Article in English | MEDLINE | ID: mdl-38570170

ABSTRACT

OBJECTIVE: The distribution and role of NMDA receptors is unclear in the afferent signaling complex of the cochlea. The present study aimed to examine the distribution of NMDA receptors in cochlear afferent signaling complex of the adult mouse, and their relationship with ribbon synapses of inner hair cells (IHCs) and GABAergic efferent terminals of the lateral olivocochlear (LOC). METHODS: Immunofluorescence staining in combination with confocal microscopy was used to investigate the distribution of glutamatergic NMDA and AMPA receptors in afferent terminals of SGNs, and their relationship with ribbon synapses of IHCs and GABAergic efferent terminals of LOC. RESULTS: Terminals with AMPA receptors along with Ribbons of IHC formed afferent synapses in the basal pole of IHCs, and those with NMDA receptors were mainly distributed longitudinally in the IHCs nuclei region. Significant difference was found in the distribution of NMDA and AMPA receptors in IHC afferent signaling complex (P<0.05). Some GABAergic terminals colocalized with NMDA receptors at the IHC nucleus region (P>0.05). CONCLUSION: There is significant difference in the distribution of NMDA and AMPA receptors in cochlear afferent signaling complex. NMDA receptors are present in the extra-synaptic region of ribbon synapses of IHCs, and they are related to GABA efferent terminals of the afferent signaling complex.


Subject(s)
Hair Cells, Auditory, Inner , Receptors, AMPA , Receptors, N-Methyl-D-Aspartate , Synapses , Animals , Hair Cells, Auditory, Inner/metabolism , Mice , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Receptors, AMPA/metabolism , Cochlea/metabolism , Male
17.
J Cell Sci ; 137(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38668720

ABSTRACT

Amyloid ß (Aß) is a central contributor to neuronal damage and cognitive impairment in Alzheimer's disease (AD). Aß disrupts AMPA receptor-mediated synaptic plasticity, a key factor in early AD progression. Numerous studies propose that Aß oligomers hinder synaptic plasticity, particularly long-term potentiation (LTP), by disrupting GluA1 (encoded by GRIA1) function, although the precise mechanism remains unclear. In this study, we demonstrate that Aß mediates the accumulation of GM1 ganglioside in lipid raft domains of cultured cells, and GluA1 exhibits preferential localization in lipid rafts via direct binding to GM1. Aß enhances the raft localization of GluA1 by increasing GM1 in these areas. Additionally, chemical LTP stimulation induces lipid raft-dependent GluA1 internalization in Aß-treated neurons, resulting in reduced cell surface and postsynaptic expression of GluA1. Consistent with this, disrupting lipid rafts and GluA1 localization in rafts rescues Aß-mediated suppression of hippocampal LTP. These findings unveil a novel functional deficit in GluA1 trafficking induced by Aß, providing new insights into the mechanism underlying AD-associated cognitive dysfunction.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Hippocampus , Long-Term Potentiation , Membrane Microdomains , Receptors, AMPA , Amyloid beta-Peptides/metabolism , Receptors, AMPA/metabolism , Membrane Microdomains/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Hippocampus/metabolism , G(M1) Ganglioside/metabolism , Humans , Neurons/metabolism , Rats , Mice , Protein Transport
18.
Brain Sci ; 14(4)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38672030

ABSTRACT

To determine the critical timing for learning and the associated synaptic plasticity, we analyzed developmental changes in learning together with training-induced plasticity. Rats were subjected to an inhibitory avoidance (IA) task prior to weaning. While IA training did not alter latency at postnatal day (PN) 16, there was a significant increase in latency from PN 17, indicating a critical day for IA learning between PN 16 and 17. One hour after training, acute hippocampal slices were prepared for whole-cell patch clamp analysis following the retrieval test. In the presence of tetrodotoxin (0.5 µM), miniature excitatory postsynaptic currents (mEPSCs) and inhibitory postsynaptic currents (mIPSCs) were sequentially recorded from the same CA1 neuron. Although no changes in the amplitude of mEPSCs or mIPSCs were observed at PN 16 and 21, significant increases in both excitatory and inhibitory currents were observed at PN 23, suggesting a specific critical day for training-induced plasticity between PN 21 and 23. Training also increased the diversity of postsynaptic currents at PN 23 but not at PN 16 and 21, demonstrating a critical day for training-induced increase in the information entropy of CA1 neurons. Finally, we analyzed the plasticity at entorhinal cortex layer III (ECIII)-CA1 or CA3-CA1 synapses for each individual rat. At either ECIII-CA1 or CA3-CA1 synapses, a significant correlation between mean α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartic acid (AMPA/NMDA) ratio and learning outcomes emerged at PN 23 at both synapses, demonstrating a critical timing for the direct link between AMPA receptor-mediated synaptic plasticity and learning efficacy. Here, we identified multiple critical periods with respect to training-induced synaptic plasticity and delineated developmental trajectories of learning mechanisms at hippocampal CA1 synapses.

19.
Front Synaptic Neurosci ; 16: 1291262, 2024.
Article in English | MEDLINE | ID: mdl-38660466

ABSTRACT

Rapid, synapse-specific neurotransmission requires the precise alignment of presynaptic neurotransmitter release and postsynaptic receptors. How postsynaptic glutamate receptor accumulation is induced during maturation is not well understood. We find that in cultures of dissociated hippocampal neurons at 11 days in vitro (DIV) numerous synaptic contacts already exhibit pronounced accumulations of the pre- and postsynaptic markers synaptotagmin, synaptophysin, synapsin, bassoon, VGluT1, PSD-95, and Shank. The presence of an initial set of AMPARs and NMDARs is indicated by miniature excitatory postsynaptic currents (mEPSCs). However, AMPAR and NMDAR immunostainings reveal rather smooth distributions throughout dendrites and synaptic enrichment is not obvious. We found that brief periods of Ca2+ influx through NMDARs induced a surprisingly rapid accumulation of NMDARs within 1 min, followed by accumulation of CaMKII and then AMPARs within 2-5 min. Postsynaptic clustering of NMDARs and AMPARs was paralleled by an increase in their mEPSC amplitudes. A peptide that blocked the interaction of NMDAR subunits with PSD-95 prevented the NMDAR clustering. NMDAR clustering persisted for 3 days indicating that brief periods of elevated glutamate fosters permanent accumulation of NMDARs at postsynaptic sites in maturing synapses. These data support the model that strong glutamatergic stimulation of immature glutamatergic synapses results in a fast and substantial increase in postsynaptic NMDAR content that required NMDAR binding to PSD-95 or its homologues and is followed by recruitment of CaMKII and subsequently AMPARs.

20.
Biochem Biophys Res Commun ; 709: 149803, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38552556

ABSTRACT

Synaptic plasticity is essential for memory encoding and stabilization of neural network activity. Plasticity is impaired in neurodegenerative conditions including Alzheimer disease (AD). A central factor in AD is amyloid precursor protein (APP). Previous studies have suggested APP involvement in synaptic plasticity, but physiological roles of APP are not well understood. Here, we identified combinatorial phosphorylation sites within APP that regulate AMPA receptor trafficking during different forms of synaptic plasticity. Dual phosphorylation sites at threonine-668/serine-675 of APP promoted endocytosis of the GluA2 subunit of AMPA receptors during homeostatic synaptic plasticity. APP was also required for GluA2 internalization during NMDA receptor-dependent long-term depression, albeit via a distinct pair of phosphoresidues at serine-655/threonine-686. These data implicate APP as a central gate for AMPA receptor internalization during distinct forms of plasticity, unlocked by specific combinations of phosphoresidues, and suggest that APP may serve broad functions in learning and memory.


Subject(s)
Alzheimer Disease , Receptors, AMPA , Humans , Receptors, AMPA/metabolism , Amyloid beta-Protein Precursor/metabolism , Phosphorylation , Neuronal Plasticity/physiology , Alzheimer Disease/metabolism , Serine/metabolism , Threonine/metabolism , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL