Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 636
Filter
1.
Cell Rep ; 43(8): 114587, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39116208

ABSTRACT

Cancer cachexia is a prevalent and often fatal wasting condition that cannot be fully reversed with nutritional interventions. Muscle atrophy is a central component of the syndrome, but the mechanisms whereby cancer leads to skeletal muscle atrophy are not well understood. We performed single-nucleus multi-omics on skeletal muscles from a mouse model of cancer cachexia and profiled the molecular changes in cachexic muscle. Our results revealed the activation of a denervation-dependent gene program that upregulates the transcription factor myogenin. Further studies showed that a myogenin-myostatin pathway promotes muscle atrophy in response to cancer cachexia. Short hairpin RNA inhibition of myogenin or inhibition of myostatin through overexpression of its endogenous inhibitor follistatin prevented cancer cachexia-induced muscle atrophy in mice. Our findings uncover a molecular basis of muscle atrophy associated with cancer cachexia and highlight potential therapeutic targets for this disorder.

2.
Dev Cell ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39121855

ABSTRACT

The mammalian kidney maintains fluid homeostasis through diverse epithelial cell types generated from nephron and ureteric progenitor cells. To extend a developmental understanding of the kidney's epithelial networks, we compared chromatin organization (single-nuclear assay for transposase-accessible chromatin sequencing [ATAC-seq]; 112,864 nuclei) and gene expression (single-cell/nuclear RNA sequencing [RNA-seq]; 109,477 cells/nuclei) in the developing human (10.6-17.6 weeks; n = 10) and mouse (post-natal day [P]0; n = 10) kidney, supplementing analysis with published mouse datasets from earlier stages. Single-cell/nuclear datasets were analyzed at a species level, and then nephron and ureteric cellular lineages were extracted and integrated into a common, cross-species, multimodal dataset. Comparative computational analyses identified conserved and divergent features of chromatin organization and linked gene activity, identifying species-specific and cell-type-specific regulatory programs. In situ validation of human-enriched gene activity points to human-specific signaling interactions in kidney development. Further, human-specific enhancer regions were linked to kidney diseases through genome-wide association studies (GWASs), highlighting the potential for clinical insight from developmental modeling.

3.
bioRxiv ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39131318

ABSTRACT

Experimental access to cell types within the mammalian spinal cord is severely limited by the availability of genetic tools. To enable access to lower motor neurons (LMNs) and LMN subtypes, which function to integrate information from the brain and control movement through direct innervation of effector muscles, we generated single cell multiome datasets from mouse and macaque spinal cords and discovered putative enhancers for each neuronal population. We cloned these enhancers into adeno-associated viral vectors (AAVs) driving a reporter fluorophore and functionally screened them in mouse. The most promising candidate enhancers were then extensively characterized using imaging and molecular techniques and further tested in rat and macaque to show conservation of LMN labeling. Additionally, we combined enhancer elements into a single vector to achieve simultaneous labeling of upper motor neurons (UMNs) and LMNs. This unprecedented LMN toolkit will enable future investigations of cell type function across species and potential therapeutic interventions for human neurodegenerative diseases.

4.
Brief Bioinform ; 25(Supplement_1)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041910

ABSTRACT

Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) generates genome-wide chromatin accessibility profiles, providing valuable insights into epigenetic gene regulation at both pooled-cell and single-cell population levels. Comprehensive analysis of ATAC-seq data involves the use of various interdependent programs. Learning the correct sequence of steps needed to process the data can represent a major hurdle. Selecting appropriate parameters at each stage, including pre-analysis, core analysis, and advanced downstream analysis, is important to ensure accurate analysis and interpretation of ATAC-seq data. Additionally, obtaining and working within a limited computational environment presents a significant challenge to non-bioinformatic researchers. Therefore, we present Cloud ATAC, an open-source, cloud-based interactive framework with a scalable, flexible, and streamlined analysis framework based on the best practices approach for pooled-cell and single-cell ATAC-seq data. These frameworks use on-demand computational power and memory, scalability, and a secure and compliant environment provided by the Google Cloud. Additionally, we leverage Jupyter Notebook's interactive computing platform that combines live code, tutorials, narrative text, flashcards, quizzes, and custom visualizations to enhance learning and analysis. Further, leveraging GPU instances has significantly improved the run-time of the single-cell framework. The source codes and data are publicly available through NIH Cloud lab https://github.com/NIGMS/ATAC-Seq-and-Single-Cell-ATAC-Seq-Analysis. This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.


Subject(s)
Cloud Computing , High-Throughput Nucleotide Sequencing , Software , High-Throughput Nucleotide Sequencing/methods , Humans , Computational Biology/methods , Chromatin Immunoprecipitation Sequencing/methods , Single-Cell Analysis/methods , Chromatin/genetics , Chromatin/metabolism
5.
Article in English | MEDLINE | ID: mdl-39049508

ABSTRACT

Gene set scoring (GSS) has been routinely conducted for gene expression analysis of bulk or single-cell RNA sequencing (RNA-seq) data, which helps to decipher single-cell heterogeneity and cell type-specific variability by incorporating prior knowledge from functional gene sets. Single-cell assay for transposase accessible chromatin using sequencing (scATAC-seq) is a powerful technique for interrogating single-cell chromatin-based gene regulation, and genes or gene sets with dynamic regulatory potentials can be regarded as cell type-specific markers as if in single-cell RNA-seq (scRNA-seq). However, there are few GSS tools specifically designed for scATAC-seq, and the applicability and performance of RNA-seq GSS tools on scATAC-seq data remain to be investigated. Here, we systematically benchmarked ten GSS tools, including four bulk RNA-seq tools, five scRNA-seq tools, and one scATAC-seq method. First, using matched scATAC-seq and scRNA-seq datasets, we found that the performance of GSS tools on scATAC-seq data was comparable to that on scRNA-seq, suggesting their applicability to scATAC-seq. Then, the performance of different GSS tools was extensively evaluated using up to ten scATAC-seq datasets. Moreover, we evaluated the impact of gene activity conversion, dropout imputation, and gene set collections on the results of GSS. Results show that dropout imputation can significantly promote the performance of almost all GSS tools, while the impact of gene activity conversion methods or gene set collections on GSS performance is more dependent on GSS tools or datasets. Finally, we provided practical guidelines for choosing appropriate preprocessing methods and GSS tools in different application scenarios.


Subject(s)
Algorithms , Benchmarking , Chromatin Immunoprecipitation Sequencing , Single-Cell Analysis , Single-Cell Analysis/methods , Single-Cell Analysis/standards , Humans , Chromatin Immunoprecipitation Sequencing/methods , RNA-Seq/methods , RNA-Seq/standards , Sequence Analysis, RNA/methods , Sequence Analysis, RNA/standards , Gene Expression Profiling/methods , Gene Expression Profiling/standards , Chromatin/genetics , Chromatin/metabolism
6.
Biology (Basel) ; 13(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39056686

ABSTRACT

With the advent of next-generation sequencing (NGS), experimental techniques that capture the biological significance of DNA loci or RNA molecules have emerged as fundamental tools for studying the epigenome and transcriptional regulation on a genome-wide scale. The volume of the generated data and the underlying complexity regarding their analysis highlight the need for robust and easy-to-use computational analytic methods that can streamline the process and provide valuable biological insights. Our solution, aPEAch, is an automated pipeline that facilitates the end-to-end analysis of both DNA- and RNA-sequencing assays, including small RNA sequencing, from assessing the quality of the input sample files to answering meaningful biological questions by exploiting the rich information embedded in biological data. Our method is implemented in Python, based on a modular approach that enables users to choose the path and extent of the analysis and the representations of the results. The pipeline can process samples with single or multiple replicates in batches, allowing the ease of use and reproducibility of the analysis across all samples. aPEAch provides a variety of sample metrics such as quality control reports, fragment size distribution plots, and all intermediate output files, enabling the pipeline to be re-executed with different parameters or algorithms, along with the publication-ready visualization of the results. Furthermore, aPEAch seamlessly incorporates advanced unsupervised learning analyses by automating clustering optimization and visualization, thus providing invaluable insight into the underlying biological mechanisms.

7.
Development ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058236

ABSTRACT

Drafting gene regulatory networks (GRNs) requires embryological knowledge pertaining to the cell type families, information on the regulatory genes, causal data from gene knockdown experiments and validations of the identified interactions by cis-regulatory analysis. We use multi-omics involving next-generation sequencing (-seq) to obtain the necessary information for drafting Strongylocentrotus purpuratus posterior gut GRN. Here we present an update to the GRN using i) a single cell RNA-seq derived cell atlas highlighting the 2 day post fertilization (dpf) sea urchin gastrula cell type families, as well as the genes expressed at single cell level, ii) a set of putative cis-regulatory modules and transcription factor (TF) binding sites obtained from chromatin accessibility ATAC-seq data, and iii) interactions directionality obtained from differential bulk RNA-seq following knockdown of the TF Sp-Pdx1, a key regulator of gut patterning in sea urchins. Combining these datasets, we draft the GRN for the hindgut Sp-Pdx1 positive cells in the 2 dpf gastrula embryo. Overall, our data suggests the complex connectivity of the posterior gut GRN and increases the resolution of gene regulatory cascades operating within it.

8.
Biochem Biophys Res Commun ; 731: 150394, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39024978

ABSTRACT

Aflatoxin B1 (AFB1) not only causes significant losses in livestock production but also poses a serious threat to human health. It is the most carcinogenic among known chemicals. Pigs are more susceptible to AFB1 and experience a higher incidence. However, the molecular mechanism of the toxic effect of AFB1 remains unclear. In this study, we used assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA-seq to uncover chromatin accessibility and gene expression dynamics in PK-15 cells during early exposure to AFB1. We observed that the toxic effects of AFB1 involve signaling pathways such as p53, PI3K-AKT, Hippo, MAPK, TLRs, apoptosis, autophagy, and cancer pathways. Basic leucine zipper (bZIP) transcription factors (TFs), including AP-1, Fos, JunB, and Fra2, play a crucial role in regulating the biological processes involved in AFB1 challenge. Several new TFs, such as BORIS, HNF1b, Atf1, and KNRNPH2, represent potential targets for the toxic mechanism of AFB1. In addition, it is crucial to focus on the concentration of intracellular zinc ions. These findings will contribute to a better understanding of the mechanisms underlying AFB1-induced nephrotoxicity and offer new molecular targets.

9.
Methods Mol Biol ; 2826: 55-63, 2024.
Article in English | MEDLINE | ID: mdl-39017885

ABSTRACT

The Assay for Transposase Accessible Chromatin (ATAC)-seq protocol is optimized to generate global maps of accessible chromatin using limited cell inputs. The Tn5 transposase tagmentation reaction simultaneously fragments and tags the accessible DNA with Illumina Nextera sequencing adapters. Fragmented and adapter tagged DNA is then purified and PCR amplified with dual indexing primers to generate a size-specific sequencing library. The One-Step workflow below outlines the Tn5 nuclei transposition from a range of cell inputs followed by PCR amplification to generate a sequencing library.


Subject(s)
B-Lymphocytes , Chromatin , High-Throughput Nucleotide Sequencing , Transposases , Chromatin/genetics , Chromatin/metabolism , Transposases/metabolism , Transposases/genetics , B-Lymphocytes/metabolism , High-Throughput Nucleotide Sequencing/methods , Humans , Gene Library , Sequence Analysis, DNA/methods , Polymerase Chain Reaction/methods , Animals , DNA/genetics , Chromatin Immunoprecipitation Sequencing/methods
10.
Plant Physiol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976578

ABSTRACT

The cuticular wax that covers the surfaces of plants is the first barrier against environmental stresses and increasingly accumulates with light exposure. However, the molecular basis of light-responsive wax biosynthesis remains elusive. In grape (Vitis vinifera), light exposure resulted in higher wax terpenoid content and lower decay and abscission rates than controls kept in darkness. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and RNA-seq data were integrated to draw the chromatin accessibility and cis-elements regulatory map to identify the potential action sites. Terpenoid synthase 12 (VvTPS12) and 3-Hydroxy-3-methylglutaryl-CoA reductase 2 (VvHMGR2) were identified as grape wax biosynthesis targets, while VvHYH and VvGATA24 were identified as terpenoid biosynthesis activators, as more abundant wax crystals and higher wax terpenoid content were observed in transiently overexpressed grape berries and Nicotiana benthamiana leaves. The interaction between VvHYH and the open chromatin of VvTPS12 was confirmed qualitatively using a dual luciferase assay and quantitatively using surface plasma resonance, with an equilibrium dissociation constant of 2.81 nM identified via the latter approach. Molecular docking simulation implied the structural nature of this interaction, indicating that 24 amino acid residues of VvHYH, including Arg106A, could bind to the VvTPS12 G-box cis-element. VvGATA24 directly bound to the open chromatin of VvHMGR2, with an equilibrium dissociation constant of 8.59 nM. 12 amino acid residues of VvGATA24, including Pro218B, interacted with the VvHMGR2 GATA-box cis-element. Our work characterizes the mechanism underlying light-mediated wax terpenoid biosynthesis and provides gene targets for future molecular breeding.

11.
Cancer Cell ; 42(7): 1217-1238.e19, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981438

ABSTRACT

Although genomic anomalies in glioblastoma (GBM) have been well studied for over a decade, its 5-year survival rate remains lower than 5%. We seek to expand the molecular landscape of high-grade glioma, composed of IDH-wildtype GBM and IDH-mutant grade 4 astrocytoma, by integrating proteomic, metabolomic, lipidomic, and post-translational modifications (PTMs) with genomic and transcriptomic measurements to uncover multi-scale regulatory interactions governing tumor development and evolution. Applying 14 proteogenomic and metabolomic platforms to 228 tumors (212 GBM and 16 grade 4 IDH-mutant astrocytoma), including 28 at recurrence, plus 18 normal brain samples and 14 brain metastases as comparators, reveals heterogeneous upstream alterations converging on common downstream events at the proteomic and metabolomic levels and changes in protein-protein interactions and glycosylation site occupancy at recurrence. Recurrent genetic alterations and phosphorylation events on PTPN11 map to important regulatory domains in three dimensions, suggesting a central role for PTPN11 signaling across high-grade gliomas.


Subject(s)
Brain Neoplasms , Glioma , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Signal Transduction , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Mutation , Proteomics/methods , Protein Processing, Post-Translational , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/metabolism , Phosphorylation , Neoplasm Grading , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism
12.
J Anim Sci Biotechnol ; 15(1): 91, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961455

ABSTRACT

BACKGROUND: Broilers stand out as one of the fastest-growing livestock globally, making a substantial contribution to animal meat production. However, the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear. This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers. We measured the growth performance of Cornish (CC) and White Plymouth Rock (RR) over a 42-d period. Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching (D21) and D42 for RNA-seq and ATAC-seq library construction. RESULTS: The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured, with CC outpacing RR in terms of weight at each stage of development. Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages, respectively. A total of 75,149 ATAC-seq peaks were annotated in promoter, exon, intron and intergenic regions, with a higher number of peaks in the promoter and intronic regions. The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis. The results spotlighted the upregulation of ACTC1 and FDPS at D21, which were primarily associated with muscle structure development by gene cluster enrichment. Additionally, a noteworthy upregulation of MUSTN1, FOS and TGFB3 was spotted in broiler chickens at D42, which were involved in cell differentiation and muscle regeneration after injury, suggesting a regulatory role of muscle growth and repair. CONCLUSIONS: This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration. Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration. These findings provide a foundation for future research to investigate the functional aspects of muscle development.

13.
Cells ; 13(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38994973

ABSTRACT

Throughout embryonic development, the shaping of the functional and morphological characteristics of embryos is orchestrated by an intricate interaction between transcription factors and cis-regulatory elements. In this study, we conducted a comprehensive analysis of deuterostome cis-regulatory landscapes during gastrulation, focusing on four paradigmatic species: the echinoderm Strongylocentrotus purpuratus, the cephalochordate Branchiostoma lanceolatum, the urochordate Ciona intestinalis, and the vertebrate Danio rerio. Our approach involved comparative computational analysis of ATAC-seq datasets to explore the genome-wide blueprint of conserved transcription factor binding motifs underlying gastrulation. We identified a core set of conserved DNA binding motifs associated with 62 known transcription factors, indicating the remarkable conservation of the gastrulation regulatory landscape across deuterostomes. Our findings offer valuable insights into the evolutionary molecular dynamics of embryonic development, shedding light on conserved regulatory subprograms and providing a comprehensive perspective on the conservation and divergence of gene regulation underlying the gastrulation process.


Subject(s)
Ciona intestinalis , Gastrulation , Gene Expression Regulation, Developmental , Animals , Gastrulation/genetics , Ciona intestinalis/genetics , Ciona intestinalis/embryology , Zebrafish/genetics , Zebrafish/embryology , Transcription Factors/metabolism , Transcription Factors/genetics , Strongylocentrotus purpuratus/genetics , Strongylocentrotus purpuratus/embryology , Conserved Sequence/genetics , Regulatory Sequences, Nucleic Acid/genetics , Lancelets/genetics , Lancelets/embryology , Evolution, Molecular
14.
J Dent Sci ; 19(3): 1680-1690, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39035291

ABSTRACT

Background/purpose: The acetylation of histone H3 proteins keeps local chromatin regions open and accessible, thereby facilitating transcriptional events. We recently reported integrative epigenomic and transcriptome analyses of differentiating dental pulp stem cells (DPSCs). A significant increase in the number of super-enhancers, which are local genomic locations marked by condensed open chromatin peaks that facilitate transcriptional events, in differentiating DPSCs were observed. However, it is still unclear whether histone deacetylase (HDACs) inhibitors (HDACis) have beneficial effects on the odontogenic differentiation of DPSCs and on the matrix mineralization-inducing ability of DPSCs. Materials and methods: DPSCs were cultured in an odontogenic induction medium for a prolonged period in the presence of HDACis, MS-275 and Trichostatin A (TSA). ATAC-seq and RNA-seq samples were collected from differentiating DPSCs to explore the epigenomic and transcriptomic alterations induced by HDACis and identify key target proteins that mediate HDACis-induced phenotypic changes. Results: MS-275 and TSA did not change whole-genome open chromatin accessibility or increase odontogenic differentiation, as assessed by alkaline phosphate activity. However, the matrix mineralization-inducing ability assessed by calcified nodule formation was significantly increased by MS-275 but not by TSA. FN1, which encodes fibronectin, was identified as upregulated by MS-275. The knockdown of fibronectin evidently suppressed MS-275-induced calcified nodule formation. Conclusion: MS-275 induced calcified nodule formation by the mechanistic upregulation of FN1, independent of epigenomic alterations. Hence, the application of MS-275 as direct capping materials has therapeutic potential for promoting reparative dentin formation by constructing a fibronectin-organizing physiological extracellular matrix environment that is adequate for matrix mineralization.

15.
Am J Hum Genet ; 111(8): 1544-1558, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39079538

ABSTRACT

Recurrent copy-number variation represents one of the most well-established genetic drivers in neurodevelopmental disorders, including autism spectrum disorder. Duplication of 15q11-q13 (dup15q) is a well-described neurodevelopmental syndrome that increases the risk of autism more than 40-fold. However, the effects of this duplication on gene expression and chromatin accessibility in specific cell types in the human brain remain unknown. To identify the cell-type-specific transcriptional and epigenetic effects of dup15q in the human frontal cortex, we conducted single-nucleus RNA sequencing and multi-omic sequencing on dup15q-affected individuals (n = 6) as well as individuals with non-dup15q autism (n = 7) and neurotypical control individuals (n = 7). Cell-type-specific differential expression analysis identified significantly regulated genes, critical biological pathways, and differentially accessible genomic regions. Although there was overall increased gene expression across the duplicated genomic region, cellular identity represented an important factor mediating gene-expression changes. As compared to other cell types, neuronal subtypes showed greater upregulation of gene expression across a critical region within the duplication. Genes that fell within the duplicated region and had high baseline expression in control individuals showed only modest changes in dup15q, regardless of cell type. Of note, dup15q and autism had largely distinct signatures of chromatin accessibility but shared the majority of transcriptional regulatory motifs, suggesting convergent biological pathways. However, the transcriptional binding-factor motifs implicated in each condition implicated distinct biological mechanisms: neuronal JUN and FOS networks in autism vs. an inflammatory transcriptional network in dup15q microglia. This work provides a cell-type-specific analysis of how dup15q changes gene expression and chromatin accessibility in the human brain, and it finds evidence of marked cell-type-specific effects of this genetic driver. These findings have implications for guiding therapeutic development in dup15q syndrome, as well as understanding the functional effects of copy-number variants more broadly in neurodevelopmental disorders.


Subject(s)
Autistic Disorder , Brain , Chromosomes, Human, Pair 15 , DNA Copy Number Variations , Humans , Chromosomes, Human, Pair 15/genetics , Brain/metabolism , Brain/pathology , Male , Autistic Disorder/genetics , Female , Autism Spectrum Disorder/genetics , Chromosome Duplication/genetics , Chromatin/genetics , Chromatin/metabolism , Trisomy/genetics , Child , Neurons/metabolism , Neurons/pathology , Chromosome Aberrations , Intellectual Disability
16.
Plant J ; 119(3): 1494-1507, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879817

ABSTRACT

Citrus is a model plant for studying adventitious embryos, a form of asexual reproduction controlled by a single dominant gene, RWP. This gene has been identified as the causal gene for nucellar embryogenesis, but its function has not yet been fully understood. In this study, we used the fast-growing Fortunella hindsii as a system to explore chromatin accessibility during the nucellar embryony initiation, emphasizing elevated chromatin accessibility in polyembryonic (PO) genotypes compared to monoembryonic ones (MO). Notably, a higher level of accessible chromatin was observed in one allele of the promoter region of FhRWP, consistent with increased expression of the allele carrying the causal structural variant. By independently performing RNAi and gene editing experiments on PO genotypes, we found the downregulation of FhRWP expression could reduce the number of nucellar embryos, while its knockout resulted in abnormal axillary bud development. In overexpression experiments, FhRWP was identified as having the unique capability of inducing the embryogenic callus formation in MO stem segments, possibly through the regulation of the WUS-CLV signaling network and the ABA and cytokinin pathway, marking the inaugural demonstration of FhRWP's potential to reignite somatic cells' embryogenic fate. This study reveals the pleiotropic function of RWP in citrus and constructs a regulatory network during adventitious embryo formation, providing a new tool for bioengineering applications in plant regeneration.


Subject(s)
Citrus , Gene Expression Regulation, Plant , Phenotype , Plant Proteins , Citrus/genetics , Citrus/physiology , Citrus/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Seeds/genetics , Seeds/growth & development , Gene Editing , Genes, Plant/genetics , Genotype
17.
bioRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38826276

ABSTRACT

Recurrent copy number variation represents one of the most well-established genetic drivers in neurodevelopmental disorders, including autism spectrum disorder (ASD). Duplication of 15q11.2-13.1 (dup15q) is a well-described neurodevelopmental syndrome that increases the risk of ASD by over 40-fold. However, the effects of this duplication on gene expression and chromatin accessibility in specific cell types in the human brain remain unknown. To identify the cell-type-specific transcriptional and epigenetic effects of dup15q in the human frontal cortex we conducted single-nucleus RNA-sequencing and multi-omic sequencing on dup15q cases (n=6) as well as non-dup15q ASD (n=7) and neurotypical controls (n=7). Cell-type-specific differential expression analysis identified significantly regulated genes, critical biological pathways, and differentially accessible genomic regions. Although there was overall increased gene expression across the duplicated genomic region, cellular identity represented an important factor mediating gene expression changes. Neuronal subtypes, showed greater upregulation of gene expression across a critical region within the duplication as compared to other cell types. Genes within the duplicated region that had high baseline expression in control individuals showed only modest changes in dup15q, regardless of cell type. Of note, dup15q and ASD had largely distinct signatures of chromatin accessibility, but shared the majority of transcriptional regulatory motifs, suggesting convergent biological pathways. However, the transcriptional binding factor motifs implicated in each condition implicated distinct biological mechanisms; neuronal JUN/FOS networks in ASD vs. an inflammatory transcriptional network in dup15q microglia. This work provides a cell-type-specific analysis of how dup15q changes gene expression and chromatin accessibility in the human brain and finds evidence of marked cell-type-specific effects of this genetic driver. These findings have implications for guiding therapeutic development in dup15q syndrome, as well as understanding the functional effects CNVs more broadly in neurodevelopmental disorders.

18.
Poult Sci ; 103(8): 103882, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833745

ABSTRACT

Long-term intensive genetic selection has led to significant differences between broiler and layer chickens, which are evident during the embryonic period. Despite this, there is a paucity of research on the genetic regulation of the initial formation of muscle fiber morphology in chick embryos. Embryonic d 17 (E17) is the key time point for myoblast fusion completion and muscle fiber morphology formation in chickens. This study aimed to explore the genetic regulatory mechanisms underlying the early muscle fiber morphology establishment in broiler chickens of Cornish (CC) and White Plymouth Rock (RR) and layer chickens of White Leghorn (WW) at E17 using the transcriptomic and chromatin accessibility sequencing of pectoral major muscles. The results showed that broiler chickens exhibited significant higher embryo weight and pectoral major muscle weight at E17 compared to layer chickens (P = 0.000). A total of 1,278, 1,248, and 892 differentially expressed genes (DEGs) of RNA-seq data were identified between CC vs. WW, RR vs. WW, and CC vs. RR, separately. All DEGs were combined for cluster analysis and they were divided into 6 clusters, including cluster 1 with higher expression in broilers and cluster 6 with higher expression in layers. DEGs in cluster 1 were enriched in terms related to macrophage activation (P = 0.002) and defense response to bacteria (P = 0.002), while DEGs in cluster 6 showed enrichment in protein-DNA complex (P = 0.003) and monooxygenase activity (P = 0.000). ATAC-seq data analysis identified a total of 38,603 peaks, with 13,051 peaks for CC, 18,780 peaks for RR, and 6,772 peaks for WW. Integrative analysis of transcriptomic and chromatin accessibility data revealed GOLM1, ISLR2, and TOPAZ1 were commonly upregulated genes in CC and RR. Furthermore, screening of all upregulated DEGs in cluster 1 from CC and RR identified GOLM1, ISLR2, and HNMT genes associated with neuroimmune functions and MYOM3 linked to muscle morphology development, showing significantly elevated expression in broiler chickens compared to layer chickens. These findings suggest active neural system connectivity during the initial formation of muscle fiber morphology in embryonic period, highlighting the early interaction between muscle fiber formation morphology and the nervous system. This study provides novel insights into late chick embryo development and lays a deeper foundation for further research.


Subject(s)
Chickens , Pectoralis Muscles , Transcriptome , Animals , Chickens/genetics , Chickens/growth & development , Chick Embryo , Pectoralis Muscles/metabolism , Embryonic Development , Epigenomics , Muscle Fibers, Skeletal/metabolism
19.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892214

ABSTRACT

Jeryak is the F1 generation of the cross between Gannan yak and Jersey cattle, which has the advantages of fast growth and high adaptability. The growth and development of skeletal muscle is closely linked to meat production and the quality of meat. However, the molecular regulatory mechanisms of muscle growth differences between Gannan yak and Jeryak analyzed from the perspective of chromatin opening have not been reported. In this study, ATAC-seq was used to analyze the difference of chromatin openness in longissimus muscle of Gannan yak and Jeryak. It was found that chromatin accessibility was more enriched in Jeryak compared to Gannan yak, especially in the range of the transcription start site (TSS) ± 2 kb. GO and KEGG enrichment analysis indicate that differential peak-associated genes are involved in the negative regulation of muscle adaptation and the Hippo signaling pathway. Integration analysis of ATAC-seq and RNA-seq revealed overlapping genes were significantly enriched during skeletal muscle cell differentiation and muscle organ morphogenesis. At the same time, we screened FOXO1, ZBED6, CRY2 and CFL2 for possible involvement in skeletal muscle development, constructed a genes and transcription factors network map, and found that some transcription factors (TFs), including YY1, KLF4, KLF5 and Bach1, were involved in skeletal muscle development. Overall, we have gained a comprehensive understanding of the key factors that impact skeletal muscle development in various breeds of cattle, providing new insights for future analysis of the molecular regulatory mechanisms involved in muscle growth and development.


Subject(s)
Muscle, Skeletal , RNA-Seq , Animals , Cattle/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Chromatin Immunoprecipitation Sequencing , Muscle Development/genetics , Chromatin/genetics , Chromatin/metabolism , Meat/analysis , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Cells ; 13(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38920660

ABSTRACT

Skeletal muscle satellite cells, the resident stem cells in pig skeletal muscle, undergo proliferation and differentiation to enable muscle tissue repair. The proliferative and differentiative abilities of these cells gradually decrease during in vitro cultivation as the cell passage number increases. Despite extensive research, the precise molecular mechanisms that regulate this process are not fully understood. To bridge this knowledge gap, we conducted transcriptomic analysis of skeletal muscle satellite cells during in vitro cultivation to quantify passage number-dependent changes in the expression of genes associated with proliferation. Additionally, we explored the relationships between gene transcriptional activity and chromatin accessibility using transposase-accessible chromatin sequencing. This revealed the closure of numerous open chromatin regions, which were primarily located in intergenic regions, as the cell passage number increased. Integrated analysis of the transcriptomic and epigenomic data demonstrated a weak correlation between gene transcriptional activity and chromatin openness in expressed genic regions; although some genes (e.g., GNB4 and FGD5) showed consistent relationships between gene expression and chromatin openness, a substantial number of differentially expressed genes had no clear association with chromatin openness in expressed genic regions. The p53-p21-RB signaling pathway may play a critical regulatory role in cell proliferation processes. The combined transcriptomic and epigenomic approach taken here provided key insights into changes in gene expression and chromatin openness during in vitro cultivation of skeletal muscle satellite cells. These findings enhance our understanding of the intricate mechanisms underlying the decline in cellular proliferation capacity in cultured cells.


Subject(s)
Cell Proliferation , RNA-Seq , Satellite Cells, Skeletal Muscle , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Animals , Cell Proliferation/genetics , Cells, Cultured , Swine , Chromatin/metabolism , Transcriptome/genetics , Gene Expression Regulation , Chromatin Immunoprecipitation Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL