Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 424
Filter
1.
Am J Physiol Regul Integr Comp Physiol ; 327(4): R423-R441, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39102465

ABSTRACT

There is evidence that astrocytes modulate synaptic transmission in the nucleus tractus solitarius (NTS) interacting with glutamatergic and purinergic mechanisms. Here, using in situ working heart-brainstem preparations, we evaluated the involvement of astrocyte and glutamatergic/purinergic neurotransmission in the processing of autonomic and respiratory pathways in the NTS of control and rats exposed to sustained hypoxia (SH). Baseline autonomic and respiratory activities and the responses to chemoreflex activation (KCN) were evaluated before and after microinjections of fluorocitrate (FCt, an astrocyte metabolic inhibitor), kynurenic acid, and pyridoxalphosphate-6-azophenyl-2',4'-disulfonate (PPADS) (nonselective antagonists of glutamatergic and purinergic receptors) into the rostral aspect of the caudal commissural NTS. FCt had no effects on the baseline parameters evaluated but reduced the bradycardic response to chemoreflex activation in SH rats. FCt combined with kynurenic acid and PPADS in control rats reduced the baseline duration of expiration, which was attenuated after SH. FCt produced a large increase in PN frequency discharge in control rats, which was reduced after SH, indicating a reduction in the astrocyte modulation after SH. The data show that 1) the bradycardic component of the peripheral chemoreflex is reduced in SH rats after astrocytes inhibition, 2) the inhibition of astrocytes in the presence of double antagonists in the NTS affects the modulation of baseline duration of expiration in control but not in SH rats, and 3) the autonomic and respiratory responses to chemoreflex activation are mediated by glutamatergic and purinergic receptors in the rostral aspect of the caudal commissural NTS.NEW & NOTEWORTHY Our findings indicate that the neurotransmission of autonomic and respiratory components of the peripheral chemoreflex in the nucleus tractus solitarius (NTS) is mediated by glutamatergic and purinergic mechanisms and reveal a selective involvement of NTS astrocytes in controlling the chemoreflex parasympathetic response in rats exposed to sustained hypoxia (SH) and the baseline duration of expiration mainly in control rats, indicating a selective role for astrocytes modulation in the NTS of control and SH rats.


Subject(s)
Astrocytes , Glutamic Acid , Hypoxia , Receptors, Purinergic , Solitary Nucleus , Synaptic Transmission , Animals , Solitary Nucleus/metabolism , Solitary Nucleus/drug effects , Astrocytes/metabolism , Astrocytes/drug effects , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Hypoxia/physiopathology , Hypoxia/metabolism , Male , Glutamic Acid/metabolism , Receptors, Purinergic/metabolism , Rats , Rats, Wistar , Kynurenic Acid/pharmacology , Chemoreceptor Cells/metabolism , Chemoreceptor Cells/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Pyridoxal Phosphate/analogs & derivatives , Pyridoxal Phosphate/pharmacology , Citrates/pharmacology , Time Factors
2.
Metabolites ; 14(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39057681

ABSTRACT

Metabolic syndrome (MetS) is a group of clinical traits directly linked to type 2 diabetes mellitus and cardiovascular diseases, whose prevalence has been rising nationally and internationally. We aimed to evaluate ten known and novel surrogate markers of insulin resistance and obesity to identify MetS in Mexican adults. The present cross-sectional study analyzed 10575 participants from ENSANUT-2018. The diagnosis of MetS was based on the Adult Treatment Panel III (ATP III) criteria and International Diabetes Federation (IDF) criteria, stratified by sex and age group. According to ATP III, the best biomarker was the metabolic score for insulin resistance (METS-IR) in men aged 20-39 and 40-59 years and lipid accumulation product (LAP) in those aged ≥60 years. The best biomarker was LAP in women aged 20-39 and triglyceride-glucose index (TyG) in those aged 40-59 and ≥60 years. Using the IDF criteria, the best biomarker was LAP in men of all ages. TyG gave the best results in women of all ages. The best biomarker for diagnosis of MetS in Mexican adults depends on the criteria, including sex and age group. LAP and TyG are easy to obtain, inexpensive, and especially useful at the primary care level.

3.
Front Immunol ; 15: 1397098, 2024.
Article in English | MEDLINE | ID: mdl-39044830

ABSTRACT

Background: Follicular helper T cells (Tfh) are pivotal in B cell responses. Activation of the purinergic receptor P2X7 on Tfh cells regulates their activity. We investigated the ATP-P2X7R axis in circulating Tfh (cTfh) cells during Respiratory Syncytial Virus (RSV) infection. Methods: We analyzed two cohorts: children with RSV infection (moderate, n=30; severe, n=21) and healthy children (n=23). We utilized ELISA to quantify the levels of PreF RSV protein-specific IgG antibodies, IL-21 cytokine, and soluble P2X7R (sP2X7R) in both plasma and nasopharyngeal aspirates (NPA). Additionally, luminometry was employed to determine ATP levels in plasma, NPA and supernatant culture. The frequency of cTfh cells, P2X7R expression, and plasmablasts were assessed by flow cytometry. To evaluate apoptosis, proliferation, and IL-21 production by cTfh cells, we cultured PBMCs in the presence of Bz-ATP and/or P2X7R antagonist (KN-62) and a flow cytometry analysis was performed. Results: In children with severe RSV disease, we observed diminished titers of neutralizing anti-PreF IgG antibodies. Additionally, severe infections, compared to moderate cases, were associated with fewer cTfh cells and reduced plasma levels of IL-21. Our investigation revealed dysregulation in the ATP-P2X7R pathway during RSV infection. This was characterized by elevated ATP levels in both plasma and NPA samples, increased expression of P2X7R on cTfh cells, lower levels of sP2X7R, and heightened ATP release from PBMCs upon stimulation, particularly evident in severe cases. Importantly, ATP exposure decreased cTfh proliferative response and IL-21 production, while promoting their apoptosis. The P2X7R antagonist KN-62 mitigated these effects. Furthermore, disease severity positively correlated with ATP levels in plasma and NPA samples and inversely correlated with cTfh frequency. Conclusion: Our findings indicate that activation of the ATP-P2X7R pathway during RSV infection may contribute to limiting the cTfh cell compartment by promoting cell death and dysfunction, ultimately leading to increased disease severity.


Subject(s)
Adenosine Triphosphate , Receptors, Purinergic P2X7 , Respiratory Syncytial Virus Infections , T Follicular Helper Cells , Humans , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/metabolism , Receptors, Purinergic P2X7/metabolism , Adenosine Triphosphate/metabolism , Male , Infant , Female , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , Child, Preschool , Signal Transduction , Interleukins/metabolism , Interleukins/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Child , Respiratory Syncytial Virus, Human/immunology
4.
J Immunol Methods ; 532: 113727, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38997100

ABSTRACT

Resident macrophages are tissue-specific innate immune cells acting as sentinels, constantly patrolling their assigned tissue to maintain homeostasis, and quickly responding to pathogenic invaders or molecular danger signals molecules when necessary. Adenosine triphosphate (ATP), when released to the extracellular medium, acts as a danger signal through specific purinergic receptors. Interaction of ATP with the purinergic receptor P2X7 activates macrophages and microglial cells in different pathological conditions, triggering inflammation. The highly expressed P2X7 receptor in these cells induces cell membrane permeabilization, inflammasome activation, cell death, and the production of inflammatory mediators, including cytokines and nitrogen and oxygen-reactive species. This review explores the techniques to evaluate the functional and molecular aspects of the P2X7 receptor, particularly in macrophages and microglial cells. Polymerase chain reaction (PCR), Western blotting, and immunocytochemistry or immunohistochemistry are essential for assessing gene and protein expression in these cell types. Evaluation of P2X7 receptor function involves the use of ATP and selective agonists and antagonists and diverse techniques, including electrophysiology, intracellular calcium measurements, ethidium bromide uptake, and propidium iodide cell viability assays. These techniques are crucial for studying the role of P2X7 receptors in immune responses, neuroinflammation, and various pathological conditions. Therefore, a comprehensive understanding of the functional and molecular aspects of the P2X7 receptor in macrophages and microglia is vital for unraveling its involvement in immune modulation and its potential as a therapeutic target. The methodologies presented and discussed herein offer valuable tools for researchers investigating the complexities of P2X7 receptor signaling in innate immune cells in health and disease.


Subject(s)
Adenosine Triphosphate , Macrophages , Microglia , Receptors, Purinergic P2X7 , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/immunology , Microglia/metabolism , Microglia/immunology , Humans , Adenosine Triphosphate/metabolism , Animals , Macrophages/immunology , Macrophages/metabolism , Immunohistochemistry , Signal Transduction
5.
Antioxidants (Basel) ; 13(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38929178

ABSTRACT

Oxidative stress (OS) and disrupted antioxidant defense mechanisms play a pivotal role in the etiology of male infertility. The alterations in reactive oxygen species (ROS) production and calcium (Ca2+) homeostasis are the main activators for the mitochondrial permeability transition pore (mPTP) opening. The mPTP opening is one of the main mechanisms involved in mitochondrial dysfunction in spermatozoa. This alteration in mitochondrial function adversely affects energy supply, sperm motility, and fertilizing capacity and contributes to the development of male infertility. In human spermatozoa, the mPTP opening has been associated with ionomycin-induced endogenous oxidative stress and peroxynitrite-induced nitrosative stress; however, the effect of exogenous oxidative stress on mPTP opening in sperm has not been evaluated. The aim of this study was to determine the effect of exogenous oxidative stress induced by hydrogen peroxide (H2O2) on mPTP opening, mitochondrial function, motility, and cell death markers in human spermatozoa. Human spermatozoa were incubated with 3 mmol/L of H2O2 for 60 min, and intracellular Ca2+ concentration, mPTP opening, mitochondrial membrane potential (ΔΨm), ATP levels, mitochondrial reactive oxygen species (mROS) production, phosphatidylserine (PS) externalization, DNA fragmentation, viability, and sperm motility were evaluated. H2O2-induced exogenous oxidative stress caused increased intracellular Ca2+, leading to subsequent mPTP opening and alteration of mitochondrial function, characterized by ΔΨm dissipation, decreased ATP levels, increased mROS production, and the subsequent alteration of sperm motility. Furthermore, H2O2-induced opening of mPTP was associated with the expression of apoptotic cell death markers including PS externalization and DNA fragmentation. These results highlight the role of exogenous oxidative stress in causing mitochondrial dysfunction, deterioration of sperm motility, and an increase in apoptotic cell death markers, including PS externalization and DNA fragmentation, through the mPTP opening. This study yielded new knowledge regarding the effects of this type of stress on mitochondrial function and specifically on mPTP opening, factors that can contribute to the development of male infertility, considering that the role of mPTP in mitochondrial dysfunction in human sperm is not completely elucidated. Therefore, these findings are relevant to understanding male infertility and may provide an in vitro model for further research aimed at improving human sperm quality.

6.
Biomolecules ; 14(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38927075

ABSTRACT

Atherosclerosis (AS) has become the leading cause of cardiovascular disease worldwide. Our previous study had observed that Nippostrongylus brasiliensis (Nb) infection or its derived products could inhibit AS development by inducing an anti-inflammatory response. We performed a metabolic analysis to screen Nb-derived metabolites with anti-inflammation activity and evaluated the AS-prevention effect. We observed that the metabolite uridine had higher expression levels in mice infected with the Nb and ES (excretory-secretory) products and could be selected as a key metabolite. ES and uridine interventions could reduce the pro-inflammatory responses and increase the anti-inflammatory responses in vitro and in vivo. The apolipoprotein E gene knockout (ApoE-/-) mice were fed with a high-fat diet for the AS modeling. Following the in vivo intervention, ES products or uridine significantly reduced serum and liver lipid levels, alleviated the formation of atherosclerosis, and reduced the pro-inflammatory responses in serum or plaques, while the anti-inflammatory responses showed opposite trends. After blocking with 5-HD (5-hydroxydecanoate sodium) in vitro, the mRNA levels of M2 markers were significantly reduced. When blocked with 5-HD in vivo, the degree of atherosclerosis was worsened, the pro-inflammatory responses were increased compared to the uridine group, while the anti-inflammatory responses decreased accordingly. Uridine, a key metabolite from Nippostrongylus brasiliensis, showed anti-inflammatory and anti-atherosclerotic effects in vitro and in vivo, which depend on the activation of the mitochondrial ATP-sensitive potassium channel.


Subject(s)
Anti-Inflammatory Agents , Atherosclerosis , Nippostrongylus , Uridine , Animals , Male , Mice , Anti-Inflammatory Agents/pharmacology , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Atherosclerosis/metabolism , Atherosclerosis/genetics , Disease Models, Animal , KATP Channels/metabolism , KATP Channels/genetics , Mice, Knockout , Mitochondria/metabolism , Mitochondria/drug effects , Uridine/pharmacology
7.
Mol Cell Endocrinol ; 591: 112275, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38777212

ABSTRACT

Metabolic changes are critical in the regulation of Ca2+ influx in central and peripheral neuroendocrine cells. To study the regulation of L-type Ca2+ channels by AMPK we used biochemical reagents and ATP/glucose-concentration manipulations in rat chromaffin cells. AICAR and Compound-C, at low concentration, significantly induce changes in L-type Ca2+ channel-current amplitude and voltage dependence. Remarkably, an overlasting decrease in the channel-current density can be induced by lowering the intracellular level of ATP. Accordingly, Ca2+ channel-current density gradually diminishes by decreasing the extracellular glucose concentration. By using immunofluorescence, a decrease in the expression of CaV1.2 is observed while decreasing extracellular glucose, suggesting that AMPK reduces the number of functional Ca2+ channels into the plasma membrane. Together, these results support for the first time the dependence of metabolic changes in the maintenance of Ca2+ channel-current by AMPK. They reveal a key step in Ca2+ influx in secretory cells.


Subject(s)
AMP-Activated Protein Kinases , Aminoimidazole Carboxamide , Calcium Channels, L-Type , Chromaffin Cells , Glucose , Animals , Chromaffin Cells/metabolism , Chromaffin Cells/drug effects , Calcium Channels, L-Type/metabolism , AMP-Activated Protein Kinases/metabolism , Rats , Glucose/metabolism , Glucose/pharmacology , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Adenosine Triphosphate/metabolism , Ribonucleotides/pharmacology , Pyrimidines/pharmacology , Calcium/metabolism , Pyrazoles/pharmacology , Cells, Cultured , Rats, Wistar , Ion Channel Gating/drug effects
8.
Article in English | MEDLINE | ID: mdl-38740177

ABSTRACT

The Macrobrachium amazonicum complex is composed of at least the Macrobrachium amazonicum and Macrobrachium pantanalense species, with the latter described from specimens originally identified as part of an endemic M. amazonicum population in the Brazilian Pantanal region. While there may be a reproductive barrier between these two Macrobrachium species, both are phylogenetically close, with small genetic distance. However, there is currently no available biochemical information of Macrobrachium pantanalense (Na+, K+)-ATPase. Here, we report the kinetic characteristics of the gill (Na+, K+)-ATPase in two populations of M. pantanalense from Baiazinha Lagoon (Miranda, MS, Brazil) and Araguari River (Uberlândia, MG, Brazil), and compare them with Macrobrachium amazonicum populations from the Paraná-Paraguay River Basin. (Na+, K+)-ATPase activities were 67.9 ± 3.4 and 93.3 ± 4.1 nmol Pi min-1 mg-1 protein for the Baiazinha Lagoon and Araguari River populations, respectively. Two ATP hydrolyzing sites were observed for the Araguari River population while a single ATP site was observed for the Baiazinha Lagoon shrimps. Compared to the Araguari River population, a 3-fold greater apparent affinity for Mg2+ and Na+ was estimated for the Baiazinha Lagoon population, but no difference in K+ affinity and ouabain inhibition was seen. The kinetic differences observed in the gill (Na+, K+)-ATPase between the two populations of M. pantanalense, compared with those of various M. amazonicum populations, highlight interspecific divergence within the Macrobrachium genus, now examined from a biochemical perspective.


Subject(s)
Gills , Palaemonidae , Sodium-Potassium-Exchanging ATPase , Animals , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Palaemonidae/genetics , Palaemonidae/enzymology , Gills/metabolism , Gills/enzymology , Brazil , Rivers , Kinetics
9.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731872

ABSTRACT

Numerous studies suggest the involvement of adenosine-5'-triphosphate (ATP) and similar nucleotides in the pathophysiology of asthma. Androgens, such as testosterone (TES), are proposed to alleviate asthma symptoms in young men. ATP and uridine-5'-triphosphate (UTP) relax the airway smooth muscle (ASM) via purinergic P2Y2 and P2Y4 receptors and K+ channel opening. We previously demonstrated that TES increased the expression of voltage-dependent K+ (KV) channels in ASM. This study investigates how TES may potentiate ASM relaxation induced by ATP and UTP. Tracheal tissues treated with or without TES (control group) from young male guinea pigs were used. In organ baths, tracheas exposed to TES (40 nM for 48 h) showed enhanced ATP- and UTP-evoked relaxation. Tetraethylammonium, a K+ channel blocker, annulled this effect. Patch-clamp experiments in tracheal myocytes showed that TES also increased ATP- and UTP-induced K+ currents, and this effect was abolished with flutamide (an androgen receptor antagonist). KV channels were involved in this phenomenon, which was demonstrated by inhibition with 4-aminopyridine. RB2 (an antagonist of almost all P2Y receptors except for P2Y2), as well as N-ethylmaleimide and SQ 22,536 (inhibitors of G proteins and adenylyl cyclase, respectively), attenuated the enhancement of the K+ currents induced by TES. Immunofluorescence and immunohistochemistry studies revealed that TES did not modify the expression of P2Y4 receptors or COX-1 and COX-2, while we have demonstrated that this androgen augmented the expression of KV1.2 and KV1.5 channels in ASM. Thus, TES leads to the upregulation of P2Y4 signaling and KV channels in guinea pig ASM, enhancing ATP and UTP relaxation responses, which likely limits the severity of bronchospasm in young males.


Subject(s)
Adenosine Triphosphate , Adenylyl Cyclases , Muscle Relaxation , Muscle, Smooth , Testosterone , Trachea , Uridine Triphosphate , Animals , Uridine Triphosphate/pharmacology , Uridine Triphosphate/metabolism , Guinea Pigs , Muscle Relaxation/drug effects , Male , Adenosine Triphosphate/metabolism , Trachea/metabolism , Trachea/drug effects , Testosterone/pharmacology , Testosterone/metabolism , Adenylyl Cyclases/metabolism , Muscle, Smooth/metabolism , Muscle, Smooth/drug effects , Potassium Channels, Voltage-Gated/metabolism , Signal Transduction/drug effects , Receptors, Purinergic P2/metabolism
10.
Biotechnol Adv ; 73: 108377, 2024.
Article in English | MEDLINE | ID: mdl-38763231

ABSTRACT

Adenosine triphosphate (ATP) regeneration is a significant step in both living cells and in vitro biotransformation (ivBT). Rotary motor ATP synthases (ATPases), which regenerate ATP in living cells, have been widely assembled in biomimetic structures for in vitro ATP synthesis. In this review, we present a comprehensive overview of ATPases, including the working principle, orientation and distribution density properties of ATPases, as well as the assembly strategies and applications of ATPase-based ATP regeneration modules. The original sources of ATPases for in vitro ATP regeneration include chromatophores, chloroplasts, mitochondria, and inverted Escherichia coli (E. coli) vesicles, which are readily accessible but unstable. Although significant advances have been made in the assembly methods for ATPase-artificial membranes in recent decades, it remains challenging to replicate the high density and orientation of ATPases observed in vivo using in vitro assembly methods. The use of bioproton pumps or chemicals for constructing proton motive forces (PMF) enables the versatility and potential of ATPase-based ATP regeneration modules. Additionally, overall robustness can be achieved via membrane component selection, such as polymers offering great mechanical stability, or by constructing a solid supporting matrix through layer-by-layer assembly techniques. Finally, the prospects of ATPase-based ATP regeneration modules can be expected with the technological development of ATPases and artificial membranes.


Subject(s)
Adenosine Triphosphatases , Adenosine Triphosphate , Biotransformation , Adenosine Triphosphate/metabolism , Adenosine Triphosphatases/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics
11.
Arch Cardiol Mex ; 2024 May 09.
Article in Spanish | MEDLINE | ID: mdl-38724012

ABSTRACT

Hypertension is a major risk of morbidity and mortality in patients when it is uncontrolled. In spite of improved therapies currently available for blood pressure control, their complications are far away from being accomplished. Therefore, chronic renal failure is frequently observed in hypertensive patients. Thus, insights on mechanisms that may contribute to arterial pressure control should be studied to prevent life-threatening cardiovascular disorders. Purinergic receptors have been recognized in the physiopathology of hypertension; this review summarizes their participation in the renal abnormalities of the kidney in hypertension. Several studies have suggested the activation of renal purinergic receptors under an elevated interstitial ATP milieu as a fundamental pathway that leads to generation and maintained hypertension. Elevated ATP concentration alters fundamental mechanisms involved in the long-term control of blood pressure such as pressure natriuresis, autoregulation of glomerular filtration rate and renal blood flow, as well as increased tubule-glomerular feedback responses, overall, these alterations decrease sodium excretion; in addition, the expression of ATP receptors is modified. Under a genetical background, ATP induces the production of vasoactive compounds, decreases renal function and induces tubulointerstitial injury before glomerular damage. Simultaneously, a deleterious interaction between angiotensin II and purinergic receptors lead to the progression of renal damage.


La hipertensión arterial descontrolada es un factor de riesgo muy relevante para el desarrollo de complicaciones cardiovasculares graves. A pesar de los recursos disponibles en la actualidad, el control de la hipertensión arterial y sus complicaciones dista mucho de lograrse. Por ello, sus secuelas continúan siendo catastróficas, como la insuficiencia renal crónica. De ahí la relevancia de reconocer factores que pudieran modificarse para evitar esta complicación. Recientemente se ha propuesto que los receptores purinérgicos contribuyen en forma importante en las alteraciones renales que ocurren en la hipertensión arterial; en esta revisión se resume brevemente su papel. En varios estudios se ha demostrado que cuando existen concentraciones elevadas de ATP en el intersticio renal, la activación de los receptores purinérgicos constituye una vía fundamental en la generación y la persistencia de hipertensión arterial. Las concentraciones elevadas de ATP alteran mecanismos fundamentales asociados en el control de la presión arterial, como el mecanismo de natriuresis de presión, la autorregulación del flujo renal y la filtración glomerular, así como el aumento en la sensibilidad del mecanismo de retroalimentación tubuloglomerular. La alteración de estos mecanismos contribuye a la disminución de la excreción urinaria de sodio. Además, se modifica la expresión de receptores de ATP (purinérgicos). Bajo la influencia de alteraciones genéticas, el ATP estimula la producción de compuestos vasoactivos y en conjunto producen una disminución de la función renal y lesión tubulointersticial antes de que se lesione el glomérulo. Al mismo tiempo, la interacción de la angiotensina II y los receptores purinérgicos favorece la progresión del daño renal.

12.
Br J Pharmacol ; 181(16): 2905-2922, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38679932

ABSTRACT

BACKGROUND AND PURPOSE: ATP is highly accumulated in secretory vesicles and secreted upon exocytosis from neurons and endocrine cells. In adrenal chromaffin granules, intraluminal ATP reaches concentrations over 100 mM. However, how these large amounts of ATP contribute to exocytosis has not been investigated. EXPERIMENTAL APPROACH: Exocytotic events in bovine and mouse adrenal chromaffin cells were measured with single cell amperometry. Cytosolic Ca2+ measurements were carried out in Fluo-4 loaded cells. Submembrane Ca2+ was examined in PC12 cells transfected with a membrane-tethered Ca2+ indicator Lck-GCaMP3. ATP release was measured using the luciferin/luciferase assay. Knockdown of P2X7 receptors was induced with short interfering RNA (siRNA). Direct Ca2+ influx through this receptor was measured using a P2X7 receptor-GCamp6 construct. KEY RESULTS: ATP induced exocytosis in chromaffin cells, whereas the ectonucleotidase apyrase reduced the release events induced by the nicotinic agonist dimethylphenylpiperazinium (DMPP), high KCl, or ionomycin. The purinergic agonist BzATP also promoted a secretory response that was dependent on extracellular Ca2+. A740003, a P2X7 receptor antagonist, abolished secretory responses of these secretagogues. Exocytosis was also diminished in chromaffin cells when P2X7 receptors were silenced using siRNAs and in cells of P2X7 receptor knockout mice. In PC12 cells, DMPP induced ATP release, triggering Ca2+ influx through P2X7 receptors. Furthermore, BzATP, DMPP, and KCl allowed the formation of submembrane Ca2+ microdomains inhibited by A740003. CONCLUSION AND IMPLICATIONS: Autocrine activation of P2X7 receptors constitutes a crucial feedback system that amplifies the secretion of catecholamines in chromaffin cells by favouring submembrane Ca2+ microdomains.


Subject(s)
Adenosine Triphosphate , Catecholamines , Chromaffin Cells , Exocytosis , Receptors, Purinergic P2X7 , Animals , Receptors, Purinergic P2X7/metabolism , Chromaffin Cells/metabolism , Chromaffin Cells/drug effects , Cattle , Adenosine Triphosphate/metabolism , Mice , Catecholamines/metabolism , Exocytosis/drug effects , PC12 Cells , Rats , Calcium/metabolism , Autocrine Communication , Mice, Inbred C57BL , Cells, Cultured , Male
13.
Int J Mol Sci ; 25(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38612888

ABSTRACT

Ionic channels are present in eucaryotic plasma and intracellular membranes. They coordinate and control several functions. Potassium channels belong to the most diverse family of ionic channels that includes ATP-dependent potassium (KATP) channels in the potassium rectifier channel subfamily. These channels were initially described in heart muscle and then in other tissues such as pancreatic, skeletal muscle, brain, and vascular and non-vascular smooth muscle tissues. In pancreatic beta cells, KATP channels are primarily responsible for maintaining the membrane potential and for depolarization-mediated insulin release, and their decreased density and activity may be related to insulin resistance. KATP channels' relationship with insulin resistance is beginning to be explored in extra-pancreatic beta tissues like the skeletal muscle, where KATP channels are involved in insulin-dependent glucose recapture and their activation may lead to insulin resistance. In adipose tissues, KATP channels containing Kir6.2 protein subunits could be related to the increase in free fatty acids and insulin resistance; therefore, pathological processes that promote prolonged adipocyte KATP channel inhibition might lead to obesity due to insulin resistance. In the central nervous system, KATP channel activation can regulate peripheric glycemia and lead to brain insulin resistance, an early peripheral alteration that can lead to the development of pathologies such as obesity and Type 2 Diabetes Mellitus (T2DM). In this review, we aim to discuss the characteristics of KATP channels, their relationship with clinical disorders, and their mechanisms and potential associations with peripheral and central insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Potassium Channels , Insulin , Insulin, Regular, Human , Pancreatic Hormones , KATP Channels , Obesity , Potassium , Adenosine Triphosphate
14.
BioTech (Basel) ; 13(2)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38651490

ABSTRACT

The intracellular [ATP]/[ADP] ratio is crucial for Escherichia coli's cellular functions, impacting transport, phosphorylation, signaling, and stress responses. Overexpression of F1-ATPase genes in E. coli increases glucose consumption, lowers energy levels, and triggers transcriptional responses in central carbon metabolism genes, particularly glycolytic ones, enhancing carbon flux. In this contribution, we report the impact of the perturbation of the energetic level in a PTS- mutant of E. coli by modifying the [ATP]/[ADP] ratio by uncoupling the cytoplasmic activity of the F1 subunit of the ATP synthase. The disruption of [ATP]/[ADP] ratio in the evolved strain of E. coli PB12 (PTS-) was achieved by the expression of the atpAGD operon encoding the soluble portion of ATP synthase F1-ATPase (strain PB12AGD+). The analysis of the physiological and metabolic response of the PTS- strain to the ATP disruption was determined using RT-qPCR of 96 genes involved in glucose and acetate transport, glycolysis and gluconeogenesis, pentose phosphate pathway (PPP), TCA cycle and glyoxylate shunt, several anaplerotic, respiratory chain, and fermentative pathways genes, sigma factors, and global regulators. The apt mutant exhibited reduced growth despite increased glucose transport due to decreased energy levels. It heightened stress response capabilities under glucose-induced energetic starvation, suggesting that the carbon flux from glycolysis is distributed toward the pentose phosphate and the Entner-Duodoroff pathway with the concomitant. Increase acetate transport, production, and utilization in response to the reduction in the [ATP]/[ADP] ratio. Upregulation of several genes encoding the TCA cycle and the glyoxylate shunt as several respiratory genes indicates increased respiratory capabilities, coupled possibly with increased availability of electron donor compounds from the TCA cycle, as this mutant increased respiratory capability by 240% more than in the PB12. The reduction in the intracellular concentration of cAMP in the atp mutant resulted in a reduced number of upregulated genes compared to PB12, suggesting that the mutant remains a robust genetic background despite the severe disruption in its energetic level.

15.
Front Cell Dev Biol ; 12: 1387234, 2024.
Article in English | MEDLINE | ID: mdl-38660621

ABSTRACT

Chronic kidney disease (CKD) is a prevalent health concern associated with various pathological conditions, including hypertensive nephropathy. Mesangial cells are crucial in maintaining glomerular function, yet their involvement in CKD pathogenesis remains poorly understood. Recent evidence indicates that overactivation of Pannexin-1 (Panx1) channels could contribute to the pathogenesis and progression of various diseases. Although Panx1 is expressed in the kidney, its contribution to the dysfunction of renal cells during pathological conditions remains to be elucidated. This study aimed to investigate the impact of Panx1 channels on mesangial cell function in the context of hypertensive nephropathy. Using an Ang II-infused mouse model and primary mesangial cell cultures, we demonstrated that in vivo exposure to Ang II sensitizes cultured mesangial cells to show increased alterations when they are subjected to subsequent in vitro exposure to Ang II. Particularly, mesangial cell cultures treated with Ang II showed elevated activity of Panx1 channels and increased release of ATP. The latter was associated with enhanced basal intracellular Ca2+ ([Ca2+]i) and increased ATP-mediated [Ca2+]i responses. These effects were accompanied by increased lipid peroxidation and reduced cell viability. Crucially, all the adverse impacts evoked by Ang II were prevented by the blockade of Panx1 channels, underscoring their critical role in mediating cellular dysfunction in mesangial cells. By elucidating the mechanisms by which Ang II negatively impacts mesangial cell function, this study provides valuable insights into the pathogenesis of renal damage in hypertensive nephropathy.

16.
Heliyon ; 10(8): e29493, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628728

ABSTRACT

Introduction: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of Coronavirus Disease 2019 (COVID-19). The disease has a wide range of clinical manifestations, from asymptomatic to severe. Ancestral contribution, sex, immune response, and genetic factors influence the presentation of the disease. The objective of the present study was to validate these genetic variants in patients with severe COVID-19 who died and in survivor patients. Methods: Single nucleotide variants (SNVs) in six genes: ATPase plasma membrane Ca2+ transporting 2 (ATP2B2), transmembrane serine protease 2 (TMPRSS2), dedicator of cytokinesis 2 (DOCK2), (interferon alpha and beta receptor subunit 2) IFNAR2, tumor necrosis factor receptor superfamily, member 1A (TNFRSF1A), and tumor necrosis factor receptor superfamily, member 1B (TNFRSF1B), were explored in two groups: the first consisted of severe COVID-19-related patients (familial cases from 58 families, n = 130), and the second group of unrelated severe COVID-19 patients (n = 1045). In each study group, death was evaluated as the outcome. Results: In non-related patients with severe COVID-19, carriers of GG genotype (rs2289274) in the ATP2B2 gene showed a high-risk probability of non-surviving (OR = 1.43). Survival analysis to 75 days indicates that carriers of GG have a higher risk than GA or AA genotypes (p = 0.0059). The haplotype GG (rs2289273-rs2289274) in ATP2B2 was found to be associated with a high risk of death in severe non-related COVID-19 patients. No significant associations were found between severe COVID-19-related patients and SNVs in ATP2B2, TMPRSS2, DOCK2, IFNAR2, TNFRSF1A, or TNFRSF1B. Conclusions: Unrelated patients with severe COVID-19 that carry the GG genotype (rs2289274) in ATP2B2 showed a high death risk. Survival analysis to 75 days indicates that carriers of GG have a higher risk of non-survival compared to GA or AA genotypes.

17.
Biol Res ; 57(1): 19, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689353

ABSTRACT

BACKGROUND: Astrocytes Ca2+ signaling play a central role in the modulation of neuronal function. Activation of metabotropic glutamate receptors (mGluR) by glutamate released during an increase in synaptic activity triggers coordinated Ca2+ signals in astrocytes. Importantly, astrocytes express the Ca2+-dependent nitric oxide (NO)-synthetizing enzymes eNOS and nNOS, which might contribute to the Ca2+ signals by triggering Ca2+ influx or ATP release through the activation of connexin 43 (Cx43) hemichannels, pannexin-1 (Panx-1) channels or Ca2+ homeostasis modulator 1 (CALHM1) channels. Hence, we aim to evaluate the participation of NO in the astrocytic Ca2+ signaling initiated by stimulation of mGluR in primary cultures of astrocytes from rat brain cortex. RESULTS: Astrocytes were stimulated with glutamate or t-ACPD and NO-dependent changes in [Ca2+]i and ATP release were evaluated. In addition, the activity of Cx43 hemichannels, Panx-1 channels and CALHM1 channels was also analyzed. The expression of Cx43, Panx-1 and CALHM1 in astrocytes was confirmed by immunofluorescence analysis and both glutamate and t-ACPD induced NO-mediated activation of CALHM1 channels via direct S-nitrosylation, which was further confirmed by assessing CALHM1-mediated current using the two-electrode voltage clamp technique in Xenopus oocytes. Pharmacological blockade or siRNA-mediated inhibition of CALHM1 expression revealed that the opening of these channels provides a pathway for ATP release and the subsequent purinergic receptor-dependent activation of Cx43 hemichannels and Panx-1 channels, which further contributes to the astrocytic Ca2+ signaling. CONCLUSIONS: Our findings demonstrate that activation of CALHM1 channels through NO-mediated S-nitrosylation in astrocytes in vitro is critical for the generation of glutamate-initiated astrocytic Ca2+ signaling.


Subject(s)
Astrocytes , Calcium Signaling , Nitric Oxide , Animals , Rats , Astrocytes/metabolism , Astrocytes/drug effects , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling/physiology , Calcium Signaling/drug effects , Cells, Cultured , Connexin 43/metabolism , Glutamic Acid/metabolism , Nitric Oxide/metabolism , Rats, Wistar
18.
BMC Biol ; 22(1): 63, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481317

ABSTRACT

BACKGROUND: Obligate blood-feeding insects obtain the nutrients and water necessary to ensure survival from the vertebrate blood. The internal taste sensilla, situated in the pharynx, evaluate the suitability of the ingested food. Here, through multiple approaches, we characterized the pharyngeal organ (PO) of the hematophagous kissing bug Rhodnius prolixus to determine its role in food assessment. The PO, located antero-dorsally in the pharynx, comprises eight taste sensilla that become bathed with the incoming blood. RESULTS: We showed that these taste sensilla house gustatory receptor neurons projecting their axons through the labral nerves to reach the subesophageal zone in the brain. We found that these neurons are electrically activated by relevant appetitive and aversive gustatory stimuli such as NaCl, ATP, and caffeine. Using RNA-Seq, we examined the expression of sensory-related gene families in the PO. We identified gustatory receptors, ionotropic receptors, transient receptor potential channels, pickpocket channels, opsins, takeouts, neuropeptide precursors, neuropeptide receptors, and biogenic amine receptors. RNA interference assays demonstrated that the salt-related pickpocket channel Rproppk014276 is required during feeding of an appetitive solution of NaCl and ATP. CONCLUSIONS: We provide evidence of the role of the pharyngeal organ in food evaluation. This work shows a comprehensive characterization of a pharyngeal taste organ in a hematophagous insect.


Subject(s)
Sodium Chloride , Taste , Animals , Taste/physiology , Sodium Chloride/pharmacology , Pharynx , Insecta , Adenosine Triphosphate
19.
Epileptic Disord ; 26(3): 332-340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38512072

ABSTRACT

OBJECTIVE: Variants in the ATP1A2 gene exhibit a wide clinical spectrum, ranging from familial hemiplegic migraine to childhood epilepsies and early infantile developmental epileptic encephalopathy (EIDEE) with movement disorders. This study aims to describe the epileptology of three unpublished cases and summarize epilepsy features of the other 17 published cases with ATP1A2 variants and EIDEE. METHODS: Medical records of three novel patients with pathogenic ATP1A2 variants were retrospectively reviewed. Additionally, the PUBMED, EMBASE, and Cochrane databases were searched until December 2023 for articles on EIDEE with ATP1A2 variants, without language or publication year restrictions. RESULTS: Three female patients, aged 6 months-10 years, were investigated. Epilepsy onset occurred between 5 days and 2 years, accompanied by severe developmental delay, intellectual disability, drug-resistant epilepsy, severe movement disorder, and recurrent status epilepticus. All individuals had pathogenic variants of the ATP1A2 gene (ATP1A2 c.720_721del (p.Ile240MetfsTer9), ATP1A2c.3022C > T (p.Arg1008Trp), ATP1A2 c.1096G > T (p.Gly366Cys), according to ACMG criteria. Memantine was p) rescribed to three patients, one with a reduction in ictal frequency, one with improvement in gait pattern, coordination, and attention span, and another one in alertness without significant side effects. SIGNIFICANCE: This study reinforces the association between ATP1A2 variants and a severe phenotype. All patients had de novo variants, focal motor seizures with impaired awareness as the primary type of seizure; of the 11 EEGs recorded, 10 presented a slow background rhythm, 7 multifocal interictal epileptiform discharges (IED), predominantly temporal IEDs, followed by frontal IED, as well as ten ictal recordings, which showed ictal onset from the same regions mentioned above. Treatment with antiseizure medication was generally ineffective, but memantine showed moderate improvement. Prospective studies are needed to enlarge the phenotype and assess the efficacy of NMDA receptor antagonist therapies in reducing seizure frequency and improving quality of life.


Subject(s)
Movement Disorders , Sodium-Potassium-Exchanging ATPase , Humans , Female , Sodium-Potassium-Exchanging ATPase/genetics , Infant , Movement Disorders/genetics , Movement Disorders/physiopathology , Movement Disorders/drug therapy , Movement Disorders/etiology , Child , Spasms, Infantile/genetics , Spasms, Infantile/physiopathology , Spasms, Infantile/drug therapy , Child, Preschool , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/drug therapy , Drug Resistant Epilepsy/physiopathology , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Retrospective Studies , Memantine/therapeutic use
20.
Biomed Rep ; 20(5): 76, 2024 May.
Article in English | MEDLINE | ID: mdl-38544961

ABSTRACT

Fetal growth restriction associated with hypertensive disorders of pregnancy (FGR-HDP) is a prevalent pathology with a higher risk of perinatal morbimortality. In this condition, placental insufficiency and endothelial dysfunction serve key roles. The present prospective cohort study monitored 11 patients with an FGR-HDP and 15 with full-term normotensive pregnancies and studied post-natal intracellular calcium concentration ([Ca2+]i) signals in human umbilical vein endothelial cells (HUVECs). Small fetuses with placental insufficiency were identified using fetal biometry with Doppler velocimetry. Mean gestational age and birth weight were 31.8±4.1 weeks and 1,260±646 g for FGR-HDP and 39.2±0.8 weeks and 3,320±336 g for normal births, respectively. Abnormal umbilical artery Doppler waveforms were found in 64% of neonates with FGR-HDP. A significant percentage (86%) of FGR newborns were admitted to the neonatal intensive care unit at Gustavo Fricke hospital, Viña del Mar, Chile, with one case of death after birth. [Ca2+]i signals were measured by microfluorimetry in Fluo-3-loaded HUVECs from primary cultures. Altered [Ca2+]i signals were observed in HUVECs from FGR-HDP, where the sustained phase of ATP-induced [Ca2+]i responses was significantly reduced compared with the normotensive group. Also, the [Ca2+]i signals induced with 10 mM Ca2+ after depletion of internal Ca2+ stores were significantly higher. The present study provides a better comprehension of the role of altered cytosolic Ca2+ dynamics in endothelial dysfunction and an in vitro model to assess novel therapeutic approaches for decreasing or preventing complications in FGR-HDP.

SELECTION OF CITATIONS
SEARCH DETAIL