Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.632
Filter
1.
Plant Cell Environ ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39351842

ABSTRACT

Adaptation to abiotic stress is critical for the survival of perennial tree species. Salinity affects plant growth and productivity by interfering with major biosynthetic processes. Detrimental effects of salinity may vary between different plant tissues and cell types. However, spatial molecular mechanisms controlling plant responses to salinity stress are not yet thoroughly understood in perennial trees. We used laser capture microdissection in clones of Populus tremula x alba to isolate palisade and vascular cells of intermediary leaf from plants exposed to 150 mM NaCl for 10 days, followed by a recovery period. Cell-specific changes in proteins and metabolites were determined. Salinity induced a vascular-specific accumulation of proteins associated with photorespiration, and the accumulation of serine, 3-phosphoglycerate and NH4 + suggesting changes in N metabolism. Accumulation of the GLUTAMINE SYNTHETASE 2 protein, and increased GS1.1 gene expression, indicated that NH4 + produced in photorespiration was assimilated to glutamine, the main amino acid translocated in Populus trees. Further analysis of total soluble proteins in stems and roots showed the accumulation of bark storage proteins induced by the salinity treatments. Collectively, our results suggest that the salt-induced photorespiration in vascular cells mediates N-reallocation in Populus, an essential process for the adaptation of trees to adverse conditions.

2.
Plant Cell Environ ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360583

ABSTRACT

ETHYLENE RESPONSE FACTOR6 (ERF6) has emerged as a central player in stress-induced plant growth inhibition. It orchestrates complex pathways that enable plants to acclimate and thrive in challenging environments. In response to various abiotic and biotic stresses, ERF6 is promptly activated through both ethylene-dependent and -independent pathways, and contributes to enhanced stress tolerance mechanisms by activating a broad spectrum of genes at various developmental stages. Despite the crucial role of ERF6, there is currently a lack of published comprehensive insights into its function in plant growth and stress response. In this respect, based on the tight connection between ethylene and ERF6, we review the latest research findings on how ethylene regulates stress responses and the mechanisms involved. In addition, we summarize the trends and advances in ERF6-mediated plant performance under optimal and stressful conditions. Finally, we also highlight key questions and suggest potential paths to unravel the ERF6 regulon in future research.

3.
Plant Physiol ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39361658

ABSTRACT

Mitogen-activated protein kinases (MAPKs/MPKs) are pivotal regulators in many stress-signaling pathways in plants. The dual phosphorylation of the TXY motif by MAP Kinase Kinases (MKKs) is essential for activating MAPKs. Here, we reveal a mechanism for MAPK activation that bypasses the need for MKKs. We identified rice (Oryza sativa) calcium-dependent protein kinase 5 (OsCPK5) and OsCPK13as positive regulators in salt stress tolerance. These kinases are essential for the full activation of OsMPK3 and OsMPK6 in response to elevated sodium levels, with both OsMPK3 and OsMPK6 also acting as positive regulators in rice salt tolerance. Biochemical analysis demonstrated that OsCPK5/13 directly interact with and activate OsMPK3/6 by phosphorylating the TXY motif in vitro and in vivo. Additionally, we have discovered that OsCPK5/13 relocate from the cell membrane to the nucleus in response to salt stress. This process relies on their N-terminal myristoylation and a calcium-dependent phosphorylation event within the N-terminus. Our results elucidate a MAPK activation pathway in rice that is independent of traditional MKK-mediated phosphorylation, highlighting the crucial roles of OsCPK5 and OsCPK13 in directly phosphorylating and activating OsMPK3/6, which are important for rice tolerance to salt stress.

4.
Crit Rev Biochem Mol Biol ; : 1-43, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39361782

ABSTRACT

In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.

5.
Biosci Rep ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39361893

ABSTRACT

Rising temperatures due to the current climate crisis will soon have devastating impacts on crop performance and resilience. In particular, CO2 assimilation is dramatically limited at high temperatures. CO2 assimilation is accomplished by rubisco, which is inhibited by the binding of inhibitory sugar phosphates to its active site. Plants therefore utilize the essential chaperone rubisco activase (RCA) to remove these inhibitors and enable continued CO2 fixation. However, RCA does not function at moderately high temperatures (42oC), resulting in impaired rubisco activity and reduced CO2 assimilation. We set out to understand temperature-dependent RCA regulation in four different C4 plants, with a focus on the crop plants maize (two cultivars) and sorghum, as well as the model grass Setaria viridis (setaria) using gas exchange measurements, which confirm that CO2 assimilation is limited by carboxylation in these organisms at high temperatures (42oC). All three species express distinct complements of RCA isoforms and each species alters the isoform and proteoform abundances in response to heat; however, the changes are species-specific. We also examine whether the heat-mediated inactivation of RCA is due to biochemical regulation rather than simple thermal denaturation. We reveal that biochemical regulation affects RCA function differently in different C4 species, and differences are apparent even between different cultivars of the same species. Our results suggest that each grass evolved different strategies to maintain RCA function during stress and we conclude that a successful engineering approach aimed at improving carbon capture in C4 grasses will need to accommodate these individual regulatory mechanisms.

6.
Ecol Lett ; 27(9): e14504, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39354910

ABSTRACT

Diverse native plant communities resist non-native plants more than species-poor communities, in part through resource competition. The role of soil biota in diversity-invasibility relationships is poorly understood, although non-native plants interact with soil biota during invasions. We tested the responses of non-native plants to soil biota generated by different native plant diversities. We applied well-watered and drought treatments in both conditioning and response phases to explore the effects of 'historical' and 'contemporary' environmental stresses. When generated in well-watered soils, the microbial legacies from higher native diversity inhibited non-native growth in well-watered conditions. In contrast, when generated in drought-treated soils, the microbial legacies from higher native diversity facilitated non-native growth in well-watered conditions. Contemporary drought eliminated microbial legacy effects on non-native growth. We provide a new understanding of mechanisms behind diversity-invasibility relationships and demonstrate that temporal variation in environmental stress shapes relationships among native plant diversity, soil biota and non-native plants.


Subject(s)
Biodiversity , Droughts , Introduced Species , Soil Microbiology , Plants/microbiology
7.
Plant Biotechnol J ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39356169

ABSTRACT

Tetraspanins (TETs) are integral membrane proteins, characterized by four transmembrane domains and a unique signature motif in their large extracellular loop. They form dynamic supramolecular complexes called tetraspanin-enriched microdomains (TEMs), through interactions with partner proteins. In plants, TETs are involved in development, reproduction and immune responses, but their role in defining abiotic stress responses is largely underexplored. We focused on OsTET5, which is differentially expressed under various abiotic stresses and localizes to both plasma membrane and endoplasmic reticulum. Using overexpression and underexpression transgenic lines we demonstrate that OsTET5 contributes to salinity and drought stress tolerance in rice. OsTET5 can interact with itself in yeast, suggesting homomer formation. Immunoblotting of native PAGE of microsomal fraction enriched from OsTET5-Myc transgenic rice lines revealed multimeric complexes containing OsTET5, suggesting the potential formation of TEM complexes. Transcriptome analysis, coupled with quantitative PCR-based validation, of OsTET5-altered transgenic lines unveiled the differential expression patterns of several stress-responsive genes, as well as those coding for transporters under salt stress. Notably, OsTET5 plays a crucial role in maintaining the ionic equilibrium during salinity stress, particularly by preserving an elevated potassium-to-sodium (K+/Na+) ratio. OsTET5 also regulates reactive oxygen species homeostasis, primarily by modulating the gene expression and activities of antioxidant pathway enzymes and proline accumulation. Our comprehensive investigation underscores the multifaceted role of OsTET5 in rice, accentuating its significance in developmental processes and abiotic stress tolerance. These findings open new avenues for potential strategies aimed at enhancing stress resilience and making valuable contributions to global food security.

8.
Genetica ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365431

ABSTRACT

The auxin response factor (ARF) is a plant-specific transcription factor that regulates the expression of auxin response genes by binding directly to their promoters. They play an important role in the regulation of plant growth and development, as well as in the response to biotic and abiotic stresses. However, the identification and functional analysis of ARFs in Fagopyrum dibotrys are still unclear. In this study, a total of 26 FdARF genes were identified using bioinformatic methods. Their chromosomal location, gene structure, physical and chemical properties of their encoded protein, subcellular location, phylogenetic tree, conserved motifs and cis-acting elements in FdARF promoters were analyzed. The results showed that 26 FdARF genes were unevenly distributed on 8 chromosomes, with the largest distribution on chromosome 4 and the least distribution on chromosome 3. Most FdARF proteins are located in the nucleus, except for the proteins FdARF7 and FdARF21 located to the cytoplasm and nucleus, while FdARF14, FdARF16, and FdARF25 proteins are located outside the chloroplast and nucleus. According to phylogenetic analysis, 26 FdARF genes were divided into 6 subgroups. Duplication analysis indicates that the expansion of the FdARF gene family was derived from segmental duplication rather than tandem duplication. The prediction based on cis-elements of the promoter showed that 26 FdARF genes were rich in multiple stress response elements, suggesting that FdARFs may be involved in the response to abiotic stress. Expression profiling analysis showed that most of the FdARF genes were expressed in the roots, stems, leaves, and tubers of F. dibotrys, but their expression exhibits a certain degree of tissue specificity. qRT-PCR analysis revealed that most members of the FdARF gene were up- or down-regulated in response to abiotic stress. The results of this study expand our understanding of the functional role of FdARFs in response to abiotic stress and lay a theoretical foundation for further exploration of other functions of FdARF genes.

9.
Mol Biol Rep ; 51(1): 1037, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365489

ABSTRACT

BACKGROUND: AGAMOUS-LIKE 8 (AGL8) belongs to the MADS-box family, which plays important roles in transcriptional regulation, sequence-specific DNA binding and other biological processes and molecular functions. The genome of cotton, a representative polyploid plant, contains multiple AGL8 genes. However, their functional differentiation is still unclear. METHODS AND RESULTS: In this study, a comprehensive genomic analysis of AGL8 genes was conducted. Cotton AGL8s were subdivided into four subgroups (Groups 1, 2, 3, and 4) based on phylogenetic analysis, and different subgroups of AGL8s presented different characteristics, including different structures and conserved motifs. With respect to the promoter regions of the GhAGL8 genes, we successfully predicted cis-elements that respond to phytohormone signal transduction and the stress response of plants. Transcriptome data and real-time quantitative PCR validation indicated that three genes, namely, GH_D07G0744, GH_A03G0856 and GH_A07G0749, were highly induced by methyl jasmonate (MeJA), salicylic acid (SA), and abscisic acid (ABA), which indicated that they function in plant resistance to abiotic and biotic stresses. CONCLUSIONS: The information from the gene structure, number and types of conserved domains, tissue-specific expression levels, and expression patterns under different treatments highlights the differences in sequence and function of the cotton AGL8 genes. Different AGL8s play roles in vegetative growth, reproductive development, and plant stress resistance. These results lay a foundation for further study of GhAGL8s in cotton.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , MADS Domain Proteins , Phylogeny , Plant Growth Regulators , Plant Proteins , Stress, Physiological , Gossypium/genetics , Gossypium/growth & development , Gossypium/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Gene Expression Profiling/methods , Promoter Regions, Genetic/genetics , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Oxylipins/pharmacology , Plant Development/genetics , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Transcriptome/genetics , Acetates
10.
BMC Genomics ; 25(1): 925, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39363209

ABSTRACT

BACKGROUND: Plant-specific TIFY proteins play crucial roles in regulating plant growth, development, and various stress responses. However, there is no information available about this family in Artemisia argyi, a well-known traditional medicinal plant with great economic value. RESULTS: A total of 34 AaTIFY genes were identified, including 4 TIFY, 22 JAZ, 5 PPD, and 3 ZML genes. Structural, motif scanning, and phylogenetic relationships analysis of these genes revealed that members within the same group or subgroup exhibit similar exon-intron structures and conserved motif compositions. The TIFY genes were unevenly distributed across the 15 chromosomes. Tandem duplication events and segmental duplication events have been identified in the TIFY family in A. argyi. These events have played a crucial role in the gene multiplication and compression of different subfamilies within the TIFY family. Promoter analysis revealed that most AaTIFY genes contain multiple cis-elements associated with stress response, phytohormone signal transduction, and plant growth and development. Expression analysis of roots and leaves using RNA-seq data revealed that certain AaTIFY genes showed tissue-specific expression patterns, and some AaTIFY genes, such as AaTIFY19/29, were found to be involved in regulating salt and saline-alkali stresses. In addition, RT-qPCR analysis showed that TIFY genes, especially AaTIFY19/23/27/29, respond to a variety of hormonal treatments, such as MeJA, ABA, SA, and IAA. This suggested that TIFY genes in A. argyi regulate plant growth and respond to different stresses by following different hormone signaling pathways. CONCLUSION: Taken together, our study conducted a comprehensive identification and analysis of the TIFY gene family in A. argyi. These findings suggested that TIFY might play an important role in plant development and stress responses, which laid a valuable foundation for further understanding the function of TIFY genes in multiple stress responses and phytohormone crosstalk in A. argyi.


Subject(s)
Artemisia , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Artemisia/genetics , Artemisia/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Stress, Physiological/genetics , Genome, Plant , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Promoter Regions, Genetic , Chromosomes, Plant/genetics
11.
BMC Plant Biol ; 24(1): 936, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39385079

ABSTRACT

Methylation at 5' cytosine of DNA molecule is an important epigenetic mark. It is known to play critical role in adaptation of organisms under different biotic and abiotic stressors via modulating gene expression and/or chromatin architecture. Plant populations evolved under variable climatic conditions may have evolved different epigenetic marks including DNA methylation. Here we, describe the genome-wide DNA methylation pattern under native field, F1 and F6 generation followed by their association with phenotypes, climate and global gene expression in the three Arabidopsis thaliana populations originated at different elevation ranges of Indian West Himalaya. We show that the global methyl cytosine (mC) content is more or less similar in the three populations but differ in their distribution across genome. There was an increase in differential methylation between the populations as elevation increased. The methylation divergence was the highest between the low and the high elevation populations. The high elevation populations were hypo-methylated than the low elevation population. The methylation in the genes was associated with population specific phenotypes and climate of the region. The genes which were differentially methylated as well as differentially expressed between the low and high elevation populations were mostly related to abiotic stresses. When grown under controlled condition, there was gain of differential methylation over native condition and the maximum percent changes was observed in CHH-sequence context. Further ~ 99.8% methylated cytosines were stably passed on from F1 to F6 generation. Overall, our data suggest that high elevation population is epigenetically more plastic under changing environmental condition.Background Arabidopsis thaliana is the model plant species and has been extensively studied to understand plants life processes. There are numerous reports on its origin, demography, evolution, epigenomes and adaptation etc. however, Indian populations of Arabidopsis thaliana evolved along wide elevation ranging from ~ 700 m amsl to ~ 3400 m amsl not explored yet. Here we, describe the genome-wide DNA methylation pattern under native field, F1 and F6 generation followed by their association with phenotypes, climate and global gene expression in the three Arabidopsis thaliana populations originated at different elevation ranges of Indian West Himalaya.Results In our study we found that total mCs percent was more or less similar in the three populations but differ in their distribution across genome. The proportion of CG-mCs was the highest, followed by CHH-mCs and CHG-mCs in all the three populations. Under native field condition the methylation divergence was more prominent between low and high elevation populations and the high elevation populations were hypo-methylated than the low elevation population. The methylation in the genes was linked to population-specific phenotypes and the regional climate. The genes that showed differential methylation and expression between low and high elevation populations were primarily associated with abiotic stress responses. When grown under controlled condition, there was gain of differential methylation compared to the native condition and the maximum percent changes was observed in CHH-sequence context. Further 99.8% methylated cytosines were stably passed on from F1 to F6 generation.Conclusions The populations of A. thaliana adapted at different climatic conditions were significantly differentially methylated both under native and controlled condition. However, the magnitude and extent of gain or loss of methylation were most significant between the low and the high elevation populations. Overall, our data suggest that high elevation population is epigenetically more plastic under changing environmental condition.


Subject(s)
Arabidopsis , DNA Methylation , Epigenesis, Genetic , Genome, Plant , Arabidopsis/genetics , India , Altitude , Phenotype , Gene Expression Regulation, Plant
12.
Front Plant Sci ; 15: 1432494, 2024.
Article in English | MEDLINE | ID: mdl-39391772

ABSTRACT

Plant growth-promoting rhizobacteria colonize the rhizosphere through dynamic and intricate interactions with plants, thereby providing various benefits and contributing to plant growth. Moreover, increasing evidence suggests that plant growth-promoting rhizobacteria affect plant tolerance to abiotic stress, but the underlying molecular mechanisms remain largely unknown. In this study, we investigated the effect of Bacillus velezensis strain GH1-13 on drought stress tolerance in rice. Phenotypical analysis, including the measurement of chlorophyll content and survival rate, showed that B. velezensis GH1-13 enhances rice tolerance to drought stress. Additionally, visualizing ROS levels and quantifying the expression of ROS-scavenging genes revealed that GH1-13 treatment reduces ROS accumulation under drought stress by activating the expression of antioxidant genes. Furthermore, the GH1-13 treatment stimulated the jasmonic acid response, which is a key phytohormone that mediates plant stress tolerance. Together with the result that jasmonic acid treatment promotes the expression of antioxidant genes, these findings indicate that B. velezensis GH1-13 improves drought tolerance in rice by reducing ROS accumulation and suggest that activation of the jasmonic acid response is deeply involved in this process.

13.
Front Plant Sci ; 15: 1456414, 2024.
Article in English | MEDLINE | ID: mdl-39363922

ABSTRACT

Anthropogenic activities and subsequent global climate change instigate drastic crop productivity and yield changes. These changes comprise a rise in the number and severity of plant stress factors, which can arise simultaneously or sequentially. When abiotic stress factors are combined, their impact on plants is more substantial than that of a singleton stress factor. One such impact is the alteration of redox cellular homeostasis, which, in turn, can regulate downstream stress-responsive gene expression and resistance response. The epigenetic regulation of gene expression in response to varied stress factors is an interesting phenomenon, which, conversely, can be stable and heritable. The epigenetic control in plants in response to abiotic stress combinations and their interactions with cellular redox alteration is an emerging field to commemorate crop yield management under climate change. The article highlights the integration of the redox signaling pathways and epigenetic regulations as pivotal components in the complex network of plant responses against multi-combinatorial stresses across time and space. This review aims to lay the foundation for developing novel approaches to mitigate the impact of environmental stresses on crop productivity, bridging the gap between theoretical understanding and practical solutions in the face of a changing climate and anthropogenic disturbances.

14.
Plant Signal Behav ; 19(1): 2411911, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39367657

ABSTRACT

Hydrogen sulfide (H2S) is a crucial signaling molecule in plants. Recent studies have shown that H2S plays an equally important role as nitric oxide (NO) and hydrogen peroxide (H2O2) in plant signaling. Previous studies have demonstrated the involvement of H2S in regulating drought and other stressful environmental conditions, but the exact downstream molecular mechanisms activated by the H2S signaling molecule remain unclear. In this study, we conducted a comprehensive genome-wide transcriptomic analysis of both wild type (WT) and double mutant (lcd/des1). Arabidopsis thaliana plants were exposed to 40% polyethylene glycol (PEG) to induce drought stress and 20 µM sodium hydrosulfide (NaHS). The resulting transcriptome data were analyzed for differentially significant genes and their statistical enrichments in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The results indicated significant upregulation of genes related to photosynthesis, carbon fixation, plant secondary metabolite biosynthesis, inositol and phosphatidylinositol signaling pathways, and stress-responsive pathways in mutant plants under drought stress. Mutant plants with impaired H2S signaling mechanisms displayed greater susceptibility to drought stress compared to wild-type plants. In summary, all findings highlight the pivotal role of H2S signaling in stimulating other drought-responsive signaling pathways.


Subject(s)
Arabidopsis , Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant , Hydrogen Sulfide , Signal Transduction , Stress, Physiological , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/drug effects , Arabidopsis/physiology , Hydrogen Sulfide/metabolism , Signal Transduction/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Plant/drug effects , Transcriptome/genetics
15.
Chemosphere ; : 143438, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39369751

ABSTRACT

The increasing prevalence and severity of abiotic stresses on plants due to climate change is among the crucial issues of decreased crop productivity worldwide. These stresses affect crop productivity and pose a challenge to food security. Polyamines (Pas) and hydrogen peroxide (H2O2) could play a vital role to minimize the impact of several abiotic stresses on the plants. Pas are small molecules that regulate various physiological and developmental processes in plants and confer stress tolerance and protection against dehydration and cellular damage. Pas also interact with plant growth regulators and participate in various signaling routes that can mediate stress response. H2O2 on the other hand, acts as a signaling agent and plays a pivotal part in controlling crop growth and productivity. It can trigger oxidative damage at high levels but acts as a stress transducer and regulator at low concentrations. H2O2 is involved in stress defense mechanisms and the activation of genes involved in conferring tolerance. Therefore, the main focus of this paper is to explore roles of Pas and H2O2 in plant responses to various abiotic stress, highlighting their involvement in stress retaliation and signaling routes. Emphasis has been placed on understanding how Pas and H2O2 function and interact with other signaling molecules. Also, interaction of Pas and H2O2 with calcium ions, abscisic acid and nitrogen has been discussed, along with activation of MAPK cascade. This additive understanding could contribute to adopt strategies to improve crop productivity and enhance plant resilience to environmental challenges.

16.
Article in English | MEDLINE | ID: mdl-39373837

ABSTRACT

The demand for crops production continues to intensify with the rapid increase in population. Agricultural crops continue to encounter abiotic and biotic stresses, which can substantially hamper their productivity. Numerous strategies have been focused to tackle the abiotic and biotic stress factors in various plants. Nanotechnology has displayed great potential to minimize the phytotoxic impacts of these environmental constraints. Copper (Cu)-based nanoparticles (NPs) have displayed beneficial effects on plant growth and stress tolerance. Cu-based NPs alone or in combination with plant growth hormones or microorganisms have been documented to induce plant tolerance and mitigate abiotic or biotic stresses in different plants. In this review, we have comprehensively discussed the uptake and translocation of Cu-based NPs in plants, and beneficial roles in improving the plant growth and development at various growth stages. Moreover, we have discussed how Cu-based NPs mechanistically modulate the physiological, biochemical, metabolic, cellular, and metabolic functions to enhance plant tolerance against both biotic (viruses, bacterial and fungal diseases, etc.) and abiotic stresses (heavy metals or metalloids, salt, and drought stress, etc.). We elucidated recent advancements, knowledge gaps, and recommendations for future research. This review would help plant and soil scientists to adapt Cu-based novel strategies such as nanofertilizers and nanopesticides to detoxify the abiotic or biotic stresses. These outcomes may contribute to the promotion of healthy food production and food security, thus providing new avenues for sustainable agriculture production.

17.
Article in English | MEDLINE | ID: mdl-39373840

ABSTRACT

The impact of chronic radiation exposure on phytohormone content and expression of phytohormone- and stress-related genes of Scots pine in the zone affected by the Chernobyl accident was studied. Needle samples were collected from three plots with contrasting levels of radioactive contamination in the Polesye State Radiation-Ecological Reserve, Republic of Belarus, and two reference plots in the Kozeluzhsky forest in June 2022. The experimental plots were located within the artificial plantations of Scots pine established in 1982, before the accident in 1986. The activity of radionuclides 137Cs, 90Sr, 241Am, 238Pu, and 239+240Pu in soil and needles ensured dose rates ranging from 3.3 to 87 mGy × year-1, while at the reference plots, the range was 0.7‒0.8 mGy × year-1. Concentrations of plant hormones, including indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), zeatin, and abscisic acid (ABA) in needles were evaluated using high-performance liquid chromatography (HPLC). We demonstrate that chronic radiation exposure is a significant stress factor that affects both phytohormonal balance and the expression of some important phytohormone- and stress-related genes. We found a tendency toward decreased ABA and auxin concentrations in trees from plots contaminated with radionuclides. The ratio (IAA + IBA + zeatin)/ABA was drastically raised at the most contaminated plots Masany and Kulazhin, reflecting the functional rearrangements of cellular metabolism that ensure plant adaptation under chronic radiation exposure. Changes in gene expression indicated modulation of ABA and Ca2+ signalling pathways, decreased potential of zeatin biosynthesis, and activation of heat shock proteins biosynthesis.

18.
Trends Ecol Evol ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39389799

ABSTRACT

Facilitative interactions play crucial roles in community organization, and the stress gradient hypothesis (SGH) provides a simple conceptual framework for the context-dependency of competitive and facilitative interactions. The idea is that positive interactions are more common under high physical and consumer stress, where species benefit from stress-tolerant neighbors, than in benign environments. We explore insights from the SGH into ecological generality, niche theory, community assembly, and diversity effects on ecosystem function and discuss how the SGH can inform our understanding of rapid evolution, mutualisms, exotic invasions, and facilitation cascades. We suggest that, with escalating global stresses, the SGH may provide a conceptual template for an interdependent perspective in ecology that can contribute to conservation and restoration efforts.

19.
Front Plant Sci ; 15: 1478398, 2024.
Article in English | MEDLINE | ID: mdl-39376239

ABSTRACT

An increasing population, climate change, and diminishing natural resources present severe threats to global food security, with traditional breeding and genetic engineering methods often falling short in addressing these rapidly evolving challenges. CRISPR/Cas systems have emerged as revolutionary tools for precise genetic modifications in crops, offering significant advancements in resilience, yield, and nutritional value, particularly in staple crops like rice and maize. This review highlights the transformative potential of CRISPR/Cas technology, emphasizing recent innovations such as prime and base editing, and the development of novel CRISPR-associated proteins, which have significantly improved the specificity, efficiency, and scope of genome editing in agriculture. These advancements enable targeted genetic modifications that enhance tolerance to abiotic stresses as well as biotic stresses. Additionally, CRISPR/Cas plays a crucial role in improving crop yield and quality by enhancing photosynthetic efficiency, nutrient uptake, and resistance to lodging, while also improving taste, texture, shelf life, and nutritional content through biofortification. Despite challenges such as off-target effects, the need for more efficient delivery methods, and ethical and regulatory concerns, the review underscores the importance of CRISPR/Cas in addressing global food security and sustainability challenges. It calls for continued research and integration of CRISPR with other emerging technologies like nanotechnology, synthetic biology, and machine learning to fully realize its potential in developing resilient, productive, and sustainable agricultural systems.

20.
J Plant Physiol ; 303: 154352, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39332324

ABSTRACT

Sucrose synthase (SuS) is a key enzyme in the regulation of sucrose metabolism in plants and participates in the reversible reaction of sucrose conversion to uridine diphosphate-glucose and fructose. It plays an important role in promoting taproot development, starch synthesis, cellulose synthesis, improving plant nitrogen fixation capacity, sugar metabolism, and fruit and seed development. Recent studies have shown that SuS responds to abiotic stresses such as drought stress, cold stress and waterlogging stress, especially in waterlogging stress. This paper provides a comprehensive review on the basic properties, physiological functions, and signal transduction pathways of SuS, aiming to establish a theoretical foundation for its further research.

SELECTION OF CITATIONS
SEARCH DETAIL