Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Bioresour Technol ; 396: 130443, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354962

ABSTRACT

In this study, a gene encoding for acetylxylan esterase was cloned and expressed in E. coli. A single uniform band with molecular weight of 31.2 kDa was observed in SDS-PAGE electrophoresis. Served as the substrate, p-nitrophenol butyrate was employed to detect the recombinant enzyme activity. It exhibited activity at a wide temperature range (30-100 °C) and pH (5.0-9.0) with the optimal temperature of 70 °C and pH 8.0. Acetylxylan esterase showed two substrates' specificities with the highest Vmax of 177.2 U/mg and Km of 20.98 mM against p-nitrophenol butyrate. Meanwhile, the Vmax of p-nitrophenol acetate was 137.0 U/mg and Km 12.16 mM. The acetic acid yield of 0.39 g/g was obtained (70 °C and pH 8.0) from wheat bran pretreated using amylase and papain. This study showed the highest yield up to date and developed a promising strategy for acetic acid production using wheat bran.


Subject(s)
Dietary Fiber , Esterases , Nitrophenols , Esterases/genetics , Acetic Acid , Escherichia coli/genetics , Temperature , Catalysis , Butyrates
2.
Bioresour Technol ; 380: 129104, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37121520

ABSTRACT

Xylan accounts for up to 40% of the structural carbohydrates in lignocellulosic feedstocks. Along with xylan, acetic acid in sources of hemicellulose can be recovered and marketed as a commodity chemical. Through vibrant bioprocessing innovations, converting xylose and acetic acid into high-value bioproducts via microbial cultures improves the feasibility of lignocellulosic biorefineries. Enzymatic hydrolysis using xylanase supplemented with acetylxylan esterase (AXE) was applied to prepare xylose-acetic acid enriched hydrolysates from bioenergy sorghum, oilcane, or energycane using sequential hydrothermal-mechanical pretreatment. Various biomass solids contents (15 to 25%, w/v) and xylanase loadings (140 to 280 FXU/g biomass) were tested to maximize xylose and acetic acid titers. The xylose and acetic acid yields were significantly improved by supplementing with AXE. The optimal yields of xylose and acetic acid were 92.29% and 62.26% obtained from hydrolyzing energycane and oilcane at 25% and 15% w/v biomass solids using 280 FXU xylanase/g biomass and AXE, respectively.


Subject(s)
Sorghum , Xylose , Xylose/chemistry , Acetic Acid , Xylans , Hydrolysis
3.
Chembiochem ; 24(9): e202200743, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36779690

ABSTRACT

A chemical synthesis of two novel phenyl glycosides of trisaccharides related to acetylarabinoxylan is described. The trisaccharides bear acetyl and arabinofuranosyl moieties at the non-reducing-end xylopyranosyl residue, which is substituted at positions 2 and 3. Both compounds were treated with various xylan deacetylases classified in different carbohydrate esterase (CE) families and significant differences between the families were found. While the arabinosylation hampers deacetylation by CE2-CE5 and CE12 family members, both epitopes are deesterified by CE1 and in particular CE6 enzymes. The 3-O-acetylated 2-O-arabinosylated compound is also processed by CE7 and majority of CE16 esterases, but not by a hitherto non-classified Flavobacterium johnsoniae acetylxylan esterase. The data suggests that a slow deesterification of the 2-O-acetylated 3-O-arabinosylated compound may be due to the acetyl group migration followed by deacetylation of this migration product.


Subject(s)
Esterases , Xylans , Humans , Esterases/metabolism , Trisaccharides , Substrate Specificity
4.
Essays Biochem ; 67(3): 479-491, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36468678

ABSTRACT

This article reviews microbial esterases participating in the degradation of the major plant hemicellulose, xylan. The main chain of this polysaccharide built of ß-1,4-glycosidically linked xylopyranosyl residues is substituted by other sugars and also partially acetylated. Besides esters of acetic acid, there are two other types of ester linkages in plant xylans. L-Arabinofuranosyl side chains form esters with phenolic acids, predominantly with ferulic acid. The dimerization of ferulic acid residues leads to cross-links connecting the hemicellulose molecules. Ferulic acid cross-links were shown to serve as covalent linkage between lignin and hemicellulose. Another cross-linking between lignin and hemicellulose is provided by esters between the xylan side residues of glucuronic or 4-O-methyl-D-glucurononic acid and lignin alcohols. Regardless of the cross-linking, the side residues prevent xylan main chains from association that leads to crystallization similar to that of cellulose. Simultaneously, xylan decorations hamper the action of enzymes acting on the main chain. The enzymatic breakdown of plant xylan, therefore, requires a concerted action of glycanases attacking the main chain and enzymes catalyzing debranching, called accessory xylanolytic enzymes including xylanolytic esterases. While acetylxylan esterases and feruloyl esterases participate directly in xylan degradation, glucuronoyl esterases catalyze its separation from lignin. The current state of knowledge of diversity, classification and structure-function relationship of these three types of xylanolytic carbohydrate esterases is discussed with emphasis on important aspects of their future research relevant to their industrial applications.


Subject(s)
Esterases , Lignin , Esterases/chemistry , Esterases/metabolism , Lignin/metabolism , Xylans/chemistry , Xylans/metabolism , Plants/metabolism , Esters/metabolism , Substrate Specificity
5.
Food Res Int ; 162(Pt A): 112019, 2022 12.
Article in English | MEDLINE | ID: mdl-36461305

ABSTRACT

Xylo-oligosaccharides (XOS) are emerging prebiotics that have recently been gained a great interest in the market of functional foods. Since their beneficial activity strictly depends on their chemical structure and on their degree of polymerization (DP), in this work an enzymatic method was developed to produce XOS with variable and modellable DPs, involving a combination of a commercial endo-ß-1,4-xylanase M3 from Trichoderma longibrachiatum and a deacetylase, using a commercial acetylated standard xylan as substrate. A Design of Experiment (DoE) was developed and through the variation of some hydrolysis conditions, some experiments allowed to obtain significant amounts of XOS with DP 7-10, up to 11%, despite XOS with DP 2-4 were always the most abundant (60-96% of total XOS). The most impacting parameter on the XOS distribution was the order of addition of the xylanase and deacetylating enzyme, while pH showed to have a great influence on the total yield. The method was also tested on an acetylated xylan extracted from grape stalks, structurally similar to the commercial standard xylan. The model was found to work in a very similar way also on the non-purified xylan sample, allowing the manipulation of enzymatic hydrolysis on a low-cost by-product, with the potential to obtain on a large scale XOS with high added value and with a specific DP, depending on the final application.


Subject(s)
Oligosaccharides , Xylans , Hydrolysis , Polymerization , Prebiotics
6.
FEBS Open Bio ; 12(10): 1875-1885, 2022 10.
Article in English | MEDLINE | ID: mdl-36054591

ABSTRACT

Acetylxylan esterase from Caldanaerobacter subterraneus subsp. tengcongensis (TTE0866) has an N-terminal region (NTR; residues 23-135) between the signal sequence (residues 1-22) and the catalytic domain (residues 136-324), which is of unknown function. Our previous study revealed the crystal structure of the wild-type (WT) enzyme containing the NTR and the catalytic domain. Although the structure of the catalytic domain was successfully determined, that of the NTR was undetermined, as its electron density was unclear. In this study, we investigated the role of the NTR through functional and structural analyses of NTR truncation mutants. Based on sequence and secondary structure analyses, NTR was confirmed to be an intrinsically disordered region. The truncation of NTR significantly decreased the solubility of the proteins at low salt concentrations compared with that of the WT. The NTR-truncated mutant easily crystallized in a conventional buffer solution. The crystal exhibited crystallographic properties comparable with those of the WT crystals suitable for structural determination. These results suggest that NTR plays a role in maintaining the solubility and inhibiting the crystallization of the catalytic domain.


Subject(s)
Acetylesterase , Firmicutes , Acetylesterase/chemistry , Acetylesterase/genetics , Acetylesterase/metabolism , Firmicutes/metabolism , Protein Sorting Signals
7.
Enzyme Microb Technol ; 160: 110075, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35691189

ABSTRACT

Konjac glucomannan (KGM) is a principal component of the gelatinous food Konjac. Konjac production through alkali treatment releases an undesirable amine-odor. Two acetylesterases (AME1 and AME2) active against konjac glucomannan (polymer or oligomer) were purified from the supernatant of Aspergillus oryzae RIB40 culture. We cloned the genes encoding AME1 and AME2 based on the genomic information of A. oryzae, constructed their expression systems in A. oryzae, and obtained the recombinant enzymes (rAME1 and rAME2). rAME1 did not act on the KGM polymer but only on the KGM oligomer, releasing approximately 60% of the acetic acid in the substrate. However, rAME2 was active against both KGM substrates, releasing approximately 80% and 100% of acetic acid from the polymer and oligomer, respectively. Both enzymes were active against xylan and exhibited a trace activity on ethyl ferulate. The acetyl group position specificities of both enzymes were analyzed via heteronuclear single quantum correlation NMR using oligosaccharides of glucomannan prepared from Aloe vera (AGM), which has a higher acetyl group content than KGM. rAME1 acted specifically on single-substituted acetyl groups and not on double-substituted ones. In contrast, rAME2 appeared to act on all the acetyl groups in AGM. Treatment of 3% KGM with rAME2 followed by heating to 90 °C resulted in gel formation under weakly acidic conditions. This is the first study to induce gelation of KGM under these conditions. A comparison of the breaking and brittleness properties of gels formed by alkaline and enzymatic treatments revealed similar texture of the two gels. Furthermore, scanning electron microscopy of the surface structure of both gels revealed that both formed a fine mesh structure. Our findings on enzymatic gelation of KGM should lead to the development of new applications in food manufacturing industry.


Subject(s)
Aspergillus oryzae , Acetates , Aspergillus oryzae/genetics , Esterases , Gels/chemistry , Mannans/chemistry , Polymers
8.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 11): 399-406, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34726178

ABSTRACT

The acetylxylan esterases (AXEs) classified into carbohydrate esterase family 4 (CE4) are metalloenzymes that catalyze the deacetylation of acetylated carbohydrates. AXE from Caldanaerobacter subterraneus subsp. tengcongensis (TTE0866), which belongs to CE4, is composed of three parts: a signal sequence (residues 1-22), an N-terminal region (NTR; residues 23-135) and a catalytic domain (residues 136-324). TTE0866 catalyzes the deacetylation of highly substituted cellulose acetate and is expected to be useful for industrial applications in the reuse of resources. In this study, the crystal structure of TTE0866 (residues 23-324) was successfully determined. The crystal diffracted to 1.9 Šresolution and belonged to space group I212121. The catalytic domain (residues 136-321) exhibited a (ß/α)7-barrel topology. However, electron density was not observed for the NTR (residues 23-135). The crystal packing revealed the presence of an intermolecular space without observable electron density, indicating that the NTR occupies this space without a defined conformation or was truncated during the crystallization process. Although the active-site conformation of TTE0866 was found to be highly similar to those of other CE4 enzymes, the orientation of its Trp264 side chain near the active site was clearly distinct. The unique orientation of the Trp264 side chain formed a different-shaped cavity within TTE0866, which may contribute to its reactivity towards highly substituted cellulose acetate.


Subject(s)
Acetylesterase , Firmicutes , Acetylesterase/chemistry , Acetylesterase/metabolism , Crystallography, X-Ray , Firmicutes/metabolism , Substrate Specificity
9.
Carbohydr Polym ; 232: 115783, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31952591

ABSTRACT

A new Flavovacterium johnsoniae isolate encodes an enzyme that is essentially identical with a recently discovered novel acetylxylan esterase, capable of liberating 3-O-acetyl group from 4-O-methyl-d-glucuronic acid-substituted xylopyranosyl (Xylp) residues (Razeq et al., 2018). In addition to deesterification of the 2-O-MeGlcA-substituted Xylp residues in acetylglucuronoxylan, the enzyme acts equally well on doubly acetylated Xylp residues from which it liberates only the 3-O-acetyl groups, leaving the 2-O-acetyl groups untouched. 3-O-Monoacetylated Xylp residues are attacked with a significantly reduced affinity. The resulting 2-O-acetylated xylan was used to investigate for the first time the migration of the 2-O-acetyl group to position 3 within the polysaccharide. In contrast to easy acetyl group migration along the monomeric xylopyranosides or non-reducing-end terminal Xylp residues of xylooligosaccharides, such a migration in the polymer required much longer heating at 100 °C. The specificity of the xylan 3-O-deacetylase was, however, no so strict on acetylated methyl and 4-nitrophenyl xylopyranosides.

10.
Article in English | MEDLINE | ID: mdl-30873405

ABSTRACT

Microalgae offer a promising biological platform for sustainable biomanufacturing of a wide range of chemicals, pharmaceuticals, and fuels. The model microalga Chlamydomonas reinhardtii is thus far the most versatile algal chassis for bioengineering and can grow using atmospheric CO2 and organic carbons (e.g., acetate and pure cellulose). Ability to utilize renewable feedstock like lignocellulosic biomass as a carbon source could significantly accelerate microalgae-based productions, but this is yet to be demonstrated. We observed that C. reinhardtii was not able to heterotrophically grow using wheat straw, a common type of lignocellulosic biomass, likely due to the recalcitrant nature of the biomass. When the biomass was pretreated with alkaline, C. reinhardtii was able to grow using acetate that was released from the biomass. To establish an eco-friendly and self-sustained growth system, we engineered C. reinhardtii to secrete a fungal acetylxylan esterase (AXE) for hydrolysis of acetylesters in the lignocellulosic biomass. Two transgenic strains (CrAXE03 and CrAXE23) secreting an active AXE into culture media were isolated. Incubation of CrAXE03 with wheat straw resulted in an eight-fold increase in the algal cell counts with a concomitant decrease of biomass acetylester contents by 96%. The transgenic lines showed minor growth defects compared to the parental strain, indicating that secretion of the AXE protein imposes limited metabolic burden. The results presented here would open new opportunities for applying low-cost renewable feedstock, available in large amounts as agricultural and manufacturing by-products, for microalgal cultivation. Furthermore, acetylesters and acetate released from them, are well-known inhibitors in lignocellulosic biofuel productions; thus, direct application of the bioengineered microalga could be exploited for improving renewable biofuel productions.

SELECTION OF CITATIONS
SEARCH DETAIL