Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Gene ; 920: 148529, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38703864

ABSTRACT

Isopentenyl diphosphate isomerase (IDI), a key enzyme in the biosynthetic pathway of diterpenoid alkaloids (DAs), plays an essential regulatory role in the synthesis and accumulation of DAs. In this study, the coding sequence (CDS) of AcIDI1 was isolated from the mother roots of Aconitum carmichaelii Debx. (GeneBank accession number OR915879). Bioinformatics analysis showed that the CDS of AcIDI1 was 894 bp, encoding a protein with 297 amino acids and the putative protein localized in the chloroplast. AcIDI1 exhibited significant homology with sequences encoding IDI in other species, and was most closely related to Aconitum vilmorinianum. Furthermore, the fusion protein has been successfully expressed in Escherichia coli (E. coli), providing a basis for future functional studies of AcIDI1. The expression pattern of AcIDI1 was analyzed by real-time quantitative PCR (qPCR), which demonstrates that AcIDI1 is a tissue-specific gene in the roots of A. carmichaelii and exhibits high expression in both daughter and mother roots. By comparing the expression levels of AcIDI1 in three tissues of the roots of A. carmichaelii at different growth stages, we propose that the mother roots (MRs) are the centers of resources allocation. The roots of A. carmichaelii continuously absorb the energy from external environment, while resources transfer behavior from MRs to both daughter roots (DRs) and axillary buds (ABs) occurs as the plant grows. This study establishes a foundation for applying the IDI gene to regulate the biosynthesis and accumulation of DAs in A. carmichaelii.


Subject(s)
Aconitum , Alkaloids , Diterpenes , Gene Expression Regulation, Plant , Plant Proteins , Plant Roots , Aconitum/genetics , Aconitum/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Diterpenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Alkaloids/metabolism , Alkaloids/biosynthesis , Phylogeny , Escherichia coli/genetics , Escherichia coli/metabolism
2.
Food Chem ; 451: 139499, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703731

ABSTRACT

Paotianxiong (PTX) is a processing product of Aconitum carmichaelii Debx., often used as a tonic food daily. However, the structure and activity of the polysaccharide component that plays a major role still need to be determined. In our work, two new polysaccharides were purified from PTX and named PTXP-1 and PTXP-2. Structural analysis showed that PTXP-1 is a glucan with a molecular weight of 915 Da and a structure of 4)-α-D-Glcp-(1 â†’ as the main chain. PTXP-2 is a glucose arabinoglycan with 4)-α-D-Glcp-(1 â†’ as the main chain, containing 8 glycosidic bonds attached, and a molecular weight of 57.9KDa. In vitro probiotic experiments demonstrated that PTXP-1 could significantly promote probiotic growth and acid production. In vivo experiments demonstrated that both PTXP-1 and PTXP-2 exhibited significant effectiveness in promoting the growth of intestinal probiotics. These findings help expand the application of polysaccharide components extracted from tonic herbs as functional food ingredients.


Subject(s)
Polysaccharides , Prebiotics , Probiotics , Prebiotics/analysis , Polysaccharides/chemistry , Animals , Probiotics/chemistry , Mice , Molecular Weight , Humans , Male , Plant Extracts/chemistry
3.
BMC Plant Biol ; 24(1): 332, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664645

ABSTRACT

BACKGROUND: Aconitum carmichaelii Debx. has been widely used as a traditional medicinal herb for a long history in China. It is highly susceptible to various dangerous diseases during the cultivation process. Downy mildew is the most serious leaf disease of A. carmichaelii, affecting plant growth and ultimately leading to a reduction in yield. To better understand the response mechanism of A. carmichaelii leaves subjected to downy mildew, the contents of endogenous plant hormones as well as transcriptome sequencing were analyzed at five different infected stages. RESULTS: The content of 3-indoleacetic acid, abscisic acid, salicylic acid and jasmonic acid has changed significantly in A. carmichaelii leaves with the development of downy mildew, and related synthetic genes such as 9-cis-epoxycarotenoid dioxygenase and phenylalanine ammonia lyase were also significant for disease responses. The transcriptomic data indicated that the differentially expressed genes were primarily associated with plant hormone signal transduction, plant-pathogen interaction, the mitogen-activated protein kinase signaling pathway in plants, and phenylpropanoid biosynthesis. Many of these genes also showed potential functions for resisting downy mildew. Through weighted gene co-expression network analysis, the hub genes and genes that have high connectivity to them were identified, which could participate in plant immune responses. CONCLUSIONS: In this study, we elucidated the response and potential genes of A. carmichaelii to downy mildew, and observed the changes of endogenous hormones content at different infection stages, so as to contribute to the further screening and identification of genes involved in the defense of downy mildew.


Subject(s)
Aconitum , Plant Diseases , Plant Growth Regulators , Transcriptome , Plant Diseases/microbiology , Plant Diseases/genetics , Aconitum/genetics , Plant Growth Regulators/metabolism , Plant Leaves/microbiology , Plant Leaves/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant
4.
BMC Genomics ; 25(1): 260, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38454328

ABSTRACT

In this study, we conducted an assembly and analysis of the organelle genomes of Aconitum carmichaelii. Our investigation encompassed the examination of organelle genome structures, gene transfer events, and the environmental selection pressures affecting A. carmichaelii. The results revealed distinct evolutionary patterns in the organelle genomes of A. carmichaelii. Especially, the plastome exhibited a more conserved structure but a higher nucleotide substitution rate (NSR), while the mitogenome displayed a more complex structure with a slower NSR. Through homology analysis, we identified several instances of unidirectional protein-coding genes (PCGs) transferring from the plastome to the mitogenome. However, we did not observe any events which genes moved from the mitogenome to the plastome. Additionally, we observed multiple transposable element (TE) fragments in the organelle genomes, with both organelles showing different preferences for the type of nuclear TE insertion. Divergence time estimation suggested that rapid differentiation occurred in Aconitum species approximately 7.96 million years ago (Mya). This divergence might be associated with the reduction in CO2 levels and the significant uplift of the Qinghai-Tibet Plateau (QTP) during the late Miocene. Selection pressure analysis indicated that the dN/dS values of both organelles were less than 1, suggested that organelle PCGs were subject to purification selection. However, we did not detect any positively selected genes (PSGs) in Subg. Aconitum and Subg. Lycoctonum. This observation further supports the idea that stronger negative selection pressure on organelle genes in Aconitum results in a more conserved amino acid sequence. In conclusion, this study contributes to a deeper understanding of organelle evolution in Aconitum species and provides a foundation for future research on the genetic mechanisms underlying the structure and function of the Aconitum plastome and mitogenome.


Subject(s)
Aconitum , Phylogeny , Aconitum/genetics , Aconitum/chemistry , Aconitum/metabolism , Organelles/genetics , Tibet
5.
J Ethnopharmacol ; 323: 117693, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38176669

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Aconitum carmichaelii is widely used in traditional Chinese medicine clinics as a bulk medicinal material. It has been used in China for more than two thousand years. Nevertheless, the stems and leaves of this plant are usually discarded as non-medicinal parts, even though they have a large biomass and exhibit therapeutic properties. Thus, it is crucial to investigate metabolites of different parts of Aconitum carmichaelii and explore the relationship between metabolites and toxicity to unleash the utilization potential of the stems and leaves. AIM OF THE STUDY: Using plant metabolomics, we aim to correlate different metabolites in various parts of Aconitum carmichaelii with toxicity, thereby screening for toxicity markers. This endeavor seeks to offer valuable insights for the development of Aconitum carmichaelii stem and leaf-based applications. MATERIALS AND METHODS: UHPLC-Q-Orbitrap MS/MS-based plant metabolomics was employed to analyze metabolites of the different parts of Aconitum carmichaelii. The cardiotoxicity and hepatotoxicity of the extracts from different parts of Aconitum carmichaelii were also investigated using zebrafish as animal model. Toxicity markers were subsequently identified by correlating toxicity with metabolites. RESULTS: A total of 113 alkaloids were identified from the extracts of various parts of Aconitum carmichaelii, with 64 different metabolites in stems and leaves compared to daughter root (Fuzi), and 21 different metabolites in stems and leaves compared to mother root (Wutou). The content of aporphine alkaloids in the stems and leaves of Aconitum carmichaelii is higher than that in the medicinal parts, while the content of the diester-diterpenoid alkaloids is lower. Additionally, the medicinal parts of Aconitum carmichaelii exhibited cardiotoxicity and hepatotoxicity, while the stems and leaves have no obvious toxicity. Finally, through correlation analysis and animal experimental verification, mesaconitine, deoxyaconitine, and hypaconitine were used as toxicity markers. CONCLUSION: Given the low toxicity of the stems and leaves and the potential efficacy of aporphine alkaloids, the stems and leaves of Aconitum carmichaelii hold promise as a valuable medicinal resource warranting further development.


Subject(s)
Aconitum , Drugs, Chinese Herbal , Animals , Aconitum/toxicity , Alkaloids/metabolism , Aporphines/metabolism , Cardiotoxicity , Chemical and Drug Induced Liver Injury , Diterpenes/metabolism , Drugs, Chinese Herbal/toxicity , Drugs, Chinese Herbal/metabolism , Plant Leaves , Plant Roots , Tandem Mass Spectrometry , Zebrafish
6.
J Sci Food Agric ; 104(2): 746-758, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37670420

ABSTRACT

BACKGROUND: Aconitum carmichaelii is an industrially cultivated medicinal plant in China and its lateral and mother roots are used in traditional Chinese medicine due to the presence of alkaloids. However, the rootlets and aerial parts are discarded after collection of the roots, and the non-toxic polysaccharides in this plant have attracted less attention than the alkaloids and poisonous features. In this study, five neutral and 14 acidic polysaccharide fractions were isolated systematically from different plant parts of A. carmichaelii, and their structural features and bioactivity were studied and compared. RESULTS: The neutral fraction isolated from the rootlets differed from those isolated from the lateral and mother roots. It consisted of less starch and more possible mannans, galactans, and/or xyloglucans, being similar to those of the aerial parts. Pectic polysaccharides containing homogalacturonan and branched type-I rhamnogalacturonan (RG-I) were present in all plant parts of A. carmichaelii. However, more arabinogalactan (AG)-II side chains in the RG-I backbone were present in the aerial parts of the plants, while more amounts of arabinans were found in the roots. Various immunomodulatory effects were observed, determined by complement fixation activity and anti-inflammatory effects on the intestinal epithelial cells of all polysaccharide fractions. CONCLUSION: This study highlighted the diversity of polysaccharides present in A. carmichaelii, especially in the unutilized plant parts, and showed their potential medicinal value. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Aconitum , Alkaloids , Plants, Medicinal , Aconitum/chemistry , Alkaloids/analysis , Polysaccharides/chemistry , China , Plant Roots/chemistry
7.
PeerJ ; 11: e16177, 2023.
Article in English | MEDLINE | ID: mdl-37868063

ABSTRACT

Trace elements play a crucial role in the growth and bioactive substance content of medicinal plants, but their utilization efficiency in soil is often low. In this study, soil and Aconitum carmichaelii samples were collected and measured from 22 different locations, followed by an analysis of the relationship between trace elements and the yield and alkaloid content of the plants. The results indicated a significant positive correlation between zinc, trace elements in the soil, and the yield and alkaloid content of A. carmichaelii. Subsequent treatment of A. carmichaelii with both bulk zinc oxide (ZnO) and zinc oxide nanoparticles (ZnO NPs) demonstrated that the use of ZnO NPs significantly enhanced plant growth and monoester-type alkaloid content. To elucidate the underlying mechanisms responsible for these effects, metabolomic analysis was performed, resulting in the identification of 38 differentially expressed metabolites in eight metabolic pathways between the two treatments. Additionally, significant differences were observed in the rhizosphere bacterial communities, with Bacteroidota and Actinobacteriota identified as valuable biomarkers for ZnO NP treatment. Covariation analysis further revealed significant correlations between specific microbial communities and metabolite expression levels. These findings provide compelling evidence that nanoscale zinc exhibits much higher utilization efficiency compared to traditional zinc fertilizer.


Subject(s)
Aconitum , Alkaloids , Microbiota , Trace Elements , Zinc Oxide , Zinc Oxide/pharmacology , Rhizosphere , Zinc , Bacteria , Soil
8.
J Appl Microbiol ; 134(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37580141

ABSTRACT

AIM: This study evaluated the phylogenetic diversity, plant growth promotion capacity, antifungal activity, and biocontrol potential of culturable actinobacterial endophytes isolated from the medicinal plant Aconitum carmichaelii Debeaux. METHODS AND RESULTS: Isolation of actinobacteria from healthy A. carmichaelii plants was carried out on six different media. Full-length 16S rRNA gene was amplified by PCR from the genomic DNA of each strain. Indole-3-acetic acid and siderophore production were quantitatively assessed by the Salkowski and Chrome Azurol S methods, respectively. Rice seeds germination and seedling growth were employed to evaluate plant growth promotion capacities of candidate strains. Dual-culture assay and pot experiments were performed to investigate the antifungal and biocontrol potential of isolates. We obtained 129 actinobacterial isolates from A. carmichaelii, and they belonged to 49 species in 7 genera. These strains exhibited diverse plant growth promotion ability, among which one strain significantly enhanced rice seeds germination, while 31 strains significantly facilitated rice seedling growth. SWUST-123 showed strong antifungal activity against four pathogens in vitro and was most compatible with Qingchuan cultivar. SWUST-123 reduced around 40% of southern blight disease occurrence compared to blank control treatment. . CONCLUSION: Aconitum carmichaelii harbored genetically diverse actinobacterial endophytes exhibiting diverse plant growth promotion and antifungal potential, some of which can be served as good candidates for biofertilizers and biocontrol agents.


Subject(s)
Aconitum , Actinobacteria , Actinobacteria/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Antifungal Agents/pharmacology , Bacteria , Seedlings/genetics , Genetic Variation , Endophytes , Plant Roots/microbiology
9.
J Sep Sci ; 46(17): e2300235, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37387561

ABSTRACT

Aconitum carmichaelii is widely used to treat chronic and intractable diseases due to its remarkable curative effect, but it is also a highly toxic herb with severe cardiac and neurotoxicity. It has been combined with honey for thousands of years to reduce toxicity and enhance efficacy, but there has been no study on the chemical constituent changes in the honey-processing so far. In this study, the chemical constituents of A. carmichaelii before and after honey-processing were characterized by ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. The results showed that a total of 118 compounds were identified, of which six compounds disappeared and five compounds were newly produced after honey-processing, and the cleavage pathway of main components was elucidated. At the same time, 25 compounds were found to have significant effects on different products, among which four compounds with the biggest difference were selected for quantitative analysis by ultra-high-performance liquid chromatography-tandem mass spectrometry. This study not only explained the chemical differences between the different products, but also helped to control the quality of the honey-processed products more effectively, and laid a foundation for further elucidating the mechanism of chemical constituent change during the honey-processing of A. carmichaelii.


Subject(s)
Aconitum , Drugs, Chinese Herbal , Honey , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Aconitum/chemistry , Honey/analysis , Drugs, Chinese Herbal/analysis
10.
Front Pharmacol ; 14: 1118017, 2023.
Article in English | MEDLINE | ID: mdl-37124193

ABSTRACT

Aberrant mitophagy has been identified as a driver for energy metabolism disorder in most cardiac pathological processes. However, finding effective targeted agents and uncovering their precise modulatory mechanisms remain unconquered. Fuzi, the lateral roots of Aconitum carmichaelii, shows unique efficacy in reviving Yang for resuscitation, which has been widely used in clinics. As a main cardiotonic component of Fuzi, mesaconine has been proven effective in various cardiomyopathy models. Here, we aimed to define a previously unrevealed cardioprotective mechanism of mesaconine-mediated restoration of obstructive mitophagy. The functional implications of mesaconine were evaluated in doxorubicin (DOX)-induced heart failure models. DOX-treated mice showed characteristic cardiac dysfunction, ectopic myocardial energy disorder, and impaired mitophagy in cardiomyocytes, which could be remarkably reversed by mesaconine. The cardioprotective effect of mesaconine was primarily attributed to its ability to promote the restoration of mitophagy in cardiomyocytes, as evidenced by elevated expression of PINK1, a key mediator of mitophagy induction. Silencing PINK1 or deactivating mitophagy could completely abolish the protective effects of mesaconine. Together, our findings suggest that the cardioprotective effects of mesaconine appear to be dependent on the activation of PINK1-induced mitophagy and that mesaconine may constitute a promising therapeutic agent for the treatment of heart failure.

11.
Int J Biol Macromol ; 244: 124822, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37257527

ABSTRACT

The polysaccharides (FP) extracted from the lateral roots of Aconitum carmichaelii Debx. (Fuzi) are natural compounds, which have effective therapy for rheumatoid arthritis (RA). Methotrexate (MTX) is the first-line drug for RA, but its application is greatly limited to the toxicity in liver and kidney and drug resistance. In this study, an attempt is made to apply oxidized FP (OFP) as a polymer carrier based on intra-articular delivery system loaded MTX. The FP could be modified and used as comprehensive gel carriers with biocompatibility and degradability for therapy of RA. Firstly, OFP-chitosan-poloxamer 407 in situ gel (OFP-CS-F407-MTX gel) was prepared by natural non-toxic cross-linking agents. Physicochemical characterization was performed by using 1H NMR and FTIR spectroscopic techniques to assess the successful functionalization of OFP. TGA, SEM and rheological experiment of OFP-CS-F407-MTX gel were investigated. Notably, we loaded MTX into OFP-CS-F407-MTX gel which had remarkable therapeutic efficacy and biosafety for RA. Therefore, OFP-CS-F407-MTX in situ gel delivery system can potentially reduce systemic toxicity and irritation of oral administration of MTX but hold a controlled release of drug for a long period of time.


Subject(s)
Aconitum , Arthritis, Rheumatoid , Methotrexate/chemistry , Aconitum/chemistry , Arthritis, Rheumatoid/drug therapy , Inflammation/drug therapy , Polysaccharides/therapeutic use
12.
Plant Signal Behav ; 18(1): 2211852, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37183693

ABSTRACT

Root rot is one of the main diseases affecting Aconitum carmichaelii Debx. during cultivation, seriously limiting yields of this herb. Currently, there is no effective control measure for aconite root rot. The antifungal activities of antagonistic strains against aconite root rot pathogens (Fusarium proliferatum, Fusarium solani, and Fusarium oxysporum) were investigated in this study. Three antagonistic strains, JKT7, JKT28 and JKT39, were screened and identified as Trichoderma asperellum, Trichoderma hamatum and Trichoderma virens, respectively. Dual culture tests showed that the inhibition rates of the three Trichoderma strains on the pathogens were all approximately 70%. The volatile metabolites had inhibitory effects on the mycelial growth of pathogens, while the nonvolatile metabolites in the culture filtrates did not show significant inhibitory effects. The volatile components analyzed by GC‒MS were mainly ketones, esters, and alcohols. These results indicate that these strains of Trichoderma and their secondary metabolites have antimicrobial activities against the pathogens of aconite root rot. This study could provide a scientific basis for the biocontrol of aconite root rot.


Subject(s)
Aconitum , Fusarium , Trichoderma , Antifungal Agents/pharmacology , Aconitum/microbiology , Fusarium/physiology , Trichoderma/physiology , Plant Diseases/microbiology
13.
Int J Mol Sci ; 24(6)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36982912

ABSTRACT

Heart failure (HF) is the most common complication following myocardial infarction, closely associated with ventricular remodeling. Aconitum carmichaelii Debx., a traditional Chinese herb, possesses therapeutic effects on HF and related cardiac diseases. However, its effects and mechanisms on HF-associated cardiac diseases are still unclear. In the present study, a water extraction of toasted Aconitum carmichaelii Debx. (WETA) was verified using UPLC-Q/TOF-MS. The heart function of HF rats was assessed by echocardiography and strain analysis, and myocardial injury was measured by serum levels of CK-MB, cTnT, and cTnI. The pathological changes of cardiac tissues were evaluated by 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin (H&E) staining, and Masson's trichrome staining. Additionally, the levels of inflammation-related genes and proteins and components related to vascular remodeling were detected by RT-qPCR, Western blot, and immunofluorescence. WETA significantly inhibited the changes in echocardiographic parameters and the increase in heart weight, cardiac infarction size, the myonecrosis, edema, and infiltration of inflammatory cells, collagen deposition in heart tissues, and also mitigated the elevated serum levels of CK-MB, cTnT, and cTnI in ISO-induced rats. Additionally, WETA suppressed the expressions of inflammatory genes, including IL-1ß, IL-6, and TNF-α and vascular injury-related genes, such as VCAM1, ICAM1, ANP, BNP, and MHC in heart tissues of ISO-induced HF rats, which were further confirmed by Western blotting and immunofluorescence. In summary, the myocardial protective effect of WETA was conferred through inhibiting inflammatory responses and abnormal vascular remodeling in ISO-treated rats.


Subject(s)
Aconitum , Heart Failure , Myocardial Infarction , Rats , Animals , Vascular Remodeling , Heart Failure/drug therapy , Heart Failure/etiology , Heart Failure/metabolism , Heart , Myocardial Infarction/pathology , Inflammation
14.
J Ethnopharmacol ; 301: 115801, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36216199

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The processed lateral root of Aconitum carmichaelii Debx. is known as Fuzi, an extensively used Traditional Chinese Medicine to treat cardiovascular diseases, rheumatism arthritis, bronchitis, pains, and hypothyroidism, etc. Although Chinese Pharmacopeia regulates the safe clinical dosage of Fuzi at 3-15 g/person/day, such recommendation not only lacks bench evidence but also does not differentiate Fuzi with different processing types, such as Heishunpian and Paofupian. AIM OF THE STUDY: The current study aimed to 1) determine No-Observed-Adverse-Effect-Levels of Heishunpian and Paofupian in rats and 2) investigate the related toxicity mechanisms for their safe clinical use. MATERIALS AND METHODS: After giving clinically relevant dosing regimen of Heishunpian/Paofupian to rats, we conducted toxicity assessments including ECG monitoring, histopathological changes and serum biomarkers to detect organ injury. Metabolomic study in the liver revealed changes in endogenous metabolite levels after two-week treatment of Fuzi preparations or its corresponding six toxic alkaloids mixtures. RESULTS: The NOAEL for both bolus and two-week treatments of Heishunpian and Paofupian in rats was designated to be 7.5 g/kg and 15 g/kg, respectively. Corresponding recommended doses in humans were 7.5-25 g/person/day for Heishunpian and 15-50 g/person/day for Paofupian. Metabolic profiles revealed more significant alterations in endogenous substances from rats receiving the two Fuzi preparations than their corresponding toxic alkaloids mixtures. Upregulation of bile acid pathway could be responsible for Fuzi induced liver injury. CONCLUSIONS: Compared to the current maximum recommended dose, our suggested upper limit of guided dose for Heishunpian was comparable, whereas that for Paofupian could be further elevated. Both C19-diterpenoid alkaloids and co-occurring components in Fuzi preparations contributed to their hepatotoxicity via upregulation of bile acid pathway.


Subject(s)
Aconitum , Alkaloids , Chemical and Drug Induced Liver Injury , Diterpenes , Drugs, Chinese Herbal , Humans , Rats , Animals , Aconitum/toxicity , Drugs, Chinese Herbal/pharmacology , Alkaloids/metabolism , Diterpenes/metabolism , Medicine, Chinese Traditional/adverse effects , Bile Acids and Salts/metabolism , Chemical and Drug Induced Liver Injury/etiology , Plant Roots/toxicity
15.
J Ethnopharmacol ; 301: 115838, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36257343

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The lateral root of Aconitum carmichaelii Debeaux. (also known as Fuzi in Chinese) is a toxic Chinese medicine but widely used in clinical practice with remarkable effects. It is specifically used to treat cardiovascular diseases, rheumatoid arthritis, and other diseases, in Korea, Japan, and India. AIM OF THIS REVIEW: This study aimed to summarize and discuss the effects of drug processing on toxicity, chemical composition, and pharmacology of the lateral root of Aconitum carmichaelii Debeaux. This review could provide feasible insights for further studies. MATERIALS AND METHODS: Relevant information on phytochemistry, pharmacology, and toxicology of Fuzi was collected through published materials and electronic databases, including the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, Baidu Scholar, Google Scholar, and CNKI. RESULTS: More than 100 chemical compounds, including alkaloids, flavonoids, and polysaccharides were revealed. Modern pharmacological studies show that these chemical components have good effects on anti-inflammatory, anti-tumor, anti-aging, treatment of cardiovascular diseases, and improving immunity. Di-ester alkaloids are the main source of Fuzi toxicity. Increasing studies have shown that Fuzi can induce multiple organ damage, especially cardiotoxicity and neurotoxicity. At present, most of the Fuzi used in clinical practice are processed. The processing affects the chemical structure, pharmacology, and toxicology of Fuzi. Moreover, different processing methods have different effects on Fuzi. CONCLUSIONS: This review analyzed the effects of Fuzi processing methods on its toxicity and efficiency. The lateral roots of aconite are the known medicinal part of Fuzi; however, the aerial parts of aconite are understudied and require further research to expand its medicinal potential. Processing and compatibility are the primary means to reduce Fuzi toxicity. Nevertheless, establishing a reasonable unified safe dose range requires further discussion.


Subject(s)
Aconitum , Alkaloids , Cardiovascular Diseases , Drugs, Chinese Herbal , Aconitum/chemistry , Plant Roots/chemistry , Drugs, Chinese Herbal/pharmacology , Alkaloids/chemistry , Medicine, Chinese Traditional
16.
Plant Dis ; 107(2): 272-275, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35852901

ABSTRACT

Growth of the Chinese herbal medicine industry has resulted in several new pests and diseases. China is one of the world largest producers of monkshood (Aconitum carmichaelii Debx.), but an unidentified root-knot nematode has become a significant pest in the southwestern provinces of Yunnan and Sichuan. Morphological characteristics and the ribosomal DNA-internal transcribed spacer and D2-D3 region of the 28S ribosomal RNA gene sequences were used to identify the nematode as Meloidogyne hapla. Through investigation, this is the first report of M. hapla infecting monkshood in Yunnan and Sichuan Provinces.


Subject(s)
Aconitum , Tylenchoidea , Animals , Aconitum/genetics , China , Tylenchoidea/genetics , DNA, Ribosomal
17.
Plant Dis ; 107(3): 658-666, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35852903

ABSTRACT

Aconitum carmichaelii Debeaux is a traditional Chinese medicinal herb that has been utilized for approximately 2,000 years. However, as cultivation has increased, there have been more reports of A. carmichaelii infections caused by four major pathogenic fungal species, Fusarium oxysporum, F. solani, Mucor circinelloides, and Sclerotium rolfsii, resulting in increased disease incidences and limited production and quality. To detect these infections, we developed a LAMP-based toolbox in this study. The cytochrome c oxidase subunit 1 (cox1) gene, translation elongation factor-1α (EF-1α), internal transcribed spacer (ITS) regions of rDNA, and alcohol dehydrogenase 1 (ADH1) gene, respectively, were used to design species-specific LAMP primer sets for F. oxysporum, F. solani, S. rolfsii, and M. circinelloides. The results showed that the LAMP-based toolbox was effective at detecting pathogens in soil and plant materials. We also used this toolbox to investigate pathogen infection in the main planting regions of A. carmichaelii. Before harvesting, F. oxysporum, M. circinelloides, and S. rolfsii were commonly found in the planting fields and in infected A. carmichaelii plants. Therefore, the toolbox we developed will be useful for tracking these infections, as well as for disease control in A. carmichaelii.


Subject(s)
Aconitum , Aconitum/microbiology
18.
Phytochemistry ; 207: 113558, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36521584

ABSTRACT

Six undescribed alkaloids together with 15 known alkaloids were isolated from the aerial parts of Aconitum carmichaelii. Their structures were elucidated extensively by NMR and HRESIMS spectroscopy. The absolute configurations of N-formyllaurotetanine, and the known compounds glaucine-ß-N-oxide and glaucine-α-N-oxide were established by electronic circular dichroism (ECD) spectra. Notably, it was the discovery of rare indole alkaloids from the genus Aconitum, and biosynthetic pathway of compounds 1 and 6 was deduced. Evaluation of the antiproliferative activity of these alkaloids demonstrated that costemline exhibited significant anti-proliferation effects against HCT116, SKOV3, and A549 cells with IC50 values of 5.6, 14.2, and 6.8 µM, respectively. Costemline could also inhibit the cell invasion activity of HCT116 cells. Mechanistic studies in HCT116 cells suggested that the antiproliferative activity of costemline was attributable to SIRT1/ROCK1/P-STAT3 pathways regulation. This study revealed the potential for developing and utilizing the aerial parts of Aconitum carmichaelii.


Subject(s)
Aconitum , Alkaloids , Diterpenes , Aconitum/chemistry , Alkaloids/chemistry , Diterpenes/chemistry , Molecular Structure , Plant Components, Aerial/metabolism , Plant Roots/chemistry , Sirtuin 1/metabolism , STAT3 Transcription Factor/metabolism , rho-Associated Kinases/metabolism
19.
J Basic Microbiol ; 63(3-4): 454-468, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36504130

ABSTRACT

Aconitum carmichaelii Debx. is famous for the bioactive aconitum alkaloids as traditional Chinese medicine. Endophytic bacteria play vital roles in plant growth, health, and the production of secondary metabolites such as alkaloids. In this study, we employed 16 S rRNA amplicon high-throughput sequencing to determine the root endophytic bacterial community of A. carmichaelii Debx. collected from three main producing areas including the geo-authentic area in China, high performance liquid chromatography to measure the contents of six bioactive alkaloids and correlation analysis to explore the relationship among environmental factors, alkaloids contents, and endophytic bacterial community. The results indicated that the root core microbiota of A. carmichaelii Debx. was dominated by Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Root endophytic bacterial community in the geo-authentic area was distinct from the other two regions. Soil nitrogen contents, organic matter, and temperature were the main factors contributing to the endophytic bacterial community structure. Significant correlation was found between alkaloids contents and some bacterial genera. Particularly, the abundance of Lactobacillus was positively correlated with the contents of benzoyl-mesaconitine and benzoyl-aconine. This study provided the first insight into the root endophytic bacterial community composition of A. carmichaelii Debx., and can direct further isolation of functional bacterial strains.


Subject(s)
Aconitum , Alkaloids , Aconitum/chemistry , Plant Roots , Alkaloids/analysis , Alkaloids/chemistry , Bacteria , China
20.
Front Pharmacol ; 13: 1002774, 2022.
Article in English | MEDLINE | ID: mdl-36339535

ABSTRACT

Response surface methodology (RSM) and Box- Behnken design (BBD) based on one-way experiments were used to optimize the extraction parameters of the lateral root polysaccharides of Aconitum carmichaelii. The extracted polysaccharides were named as refined fucose polysaccharide. The optimal conditions included a water to raw material ratio of 43, an extraction time of 2 h, and an extraction temperature of 90°C. The shape of RFP was shown by infrared spectroscopy (IR) and scanning electron microscopy (SEM) analysis. The monosaccharide composition and molecular weight of RFP was determined by high-performance liquid chromatography (HPLC). Furthermore, RFP exhibited moderate antioxidant activity by analyzing the scavenging rates of 2,2-diphenyl-1-picrylhydrazyl radical, superoxide anion radical, hydroxyl radical, and ABTS + radical. RFP exerted cytoprotective effects against hydrogen peroxide (H2O2)-induced injury in the rat renal tubular epithelial cell line rat renal tubular epithelial cells (NRK-52E) and inhibited apoptosis. In addition, researches found that RFP could alleviate cisplatin-induced acute kidney injury in mice by enhancing the levels of glutathione (GSH) and glutathione peroxidase-4 (GPX-4), decreasing the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), reducing lipid peroxidation, and thus inhibiting ferroptosis. In conclusion, this study provides a good strategy for obtaining bioactive polysaccharides from Fuzi.

SELECTION OF CITATIONS
SEARCH DETAIL