Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cell Dev Biol ; 12: 1433857, 2024.
Article in English | MEDLINE | ID: mdl-39086662

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is the most common liver disorder worldwide, with an estimated global prevalence of more than 31%. Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as non-alcoholic steatohepatitis (NASH), is a progressive form of MASLD characterized by hepatic steatosis, inflammation, and fibrosis. This review aims to provide a comprehensive analysis of the extrahepatic manifestations of MASH, focusing on chronic diseases related to the cardiovascular, muscular, and renal systems. A systematic review of published studies and literature was conducted to summarize the findings related to the systemic impacts of MASLD and MASH. The review focused on the association of MASLD and MASH with metabolic comorbidities, cardiovascular mortality, sarcopenia, and chronic kidney disease. Mechanistic insights into the concept of lipotoxic inflammatory "spill over" from the MASH-affected liver were also explored. MASLD and MASH are highly associated (50%-80%) with other metabolic comorbidities such as impaired insulin response, type 2 diabetes, dyslipidemia, hypertriglyceridemia, and hypertension. Furthermore, more than 90% of obese patients with type 2 diabetes have MASH. Data suggest that in middle-aged individuals (especially those aged 45-54), MASLD is an independent risk factor for cardiovascular mortality, sarcopenia, and chronic kidney disease. The concept of lipotoxic inflammatory "spill over" from the MASH-affected liver plays a crucial role in mediating the systemic pathological effects observed. Understanding the multifaceted impact of MASH on the heart, muscle, and kidney is crucial for early detection and risk stratification. This knowledge is also timely for implementing comprehensive disease management strategies addressing multi-organ involvement in MASH pathogenesis.

2.
Int J Mol Sci ; 25(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39201336

ABSTRACT

Adipose tissue (AT) represents a plastic organ that can undergo significant remodeling in response to metabolic demands. With its numerous checkpoints, the incretin system seems to play a significant role in controlling glucose homeostasis and energy balance. The importance of the incretin hormones, namely the glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic peptide (GIP), in controlling the function of adipose cells has been brought to light by recent studies. Notably, a "paradigm shift" in reevaluating the role of the incretin system in AT as a potential target to treat obesity-linked metabolic disorders resulted from the demonstration that a disruption of the GIP and GLP-1 signaling axis in fat is associated with adiposity-induced insulin-resistance (IR) and/or type 2 diabetes mellitus (T2D). We will briefly discuss the (patho)physiological functions of GLP-1 and GIP signaling in AT in this review, emphasizing their potential impacts on lipid storage, adipogenesis, glucose metabolism and inflammation. We will also address the conundrum with the perturbation of the incretin axis in white or brown fat tissue and the emergence of metabolic disorders. In order to reduce or avoid adiposity-related metabolic complications, we will finally go over a potential scientific rationale for suggesting AT as a novel target for GLP-1 and GIP receptor agonists and co-agonists.


Subject(s)
Adipose Tissue , Glucagon-Like Peptide 1 , Incretins , Insulin Resistance , Obesity , Humans , Incretins/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Animals , Glucagon-Like Peptide 1/metabolism , Gastric Inhibitory Polypeptide/metabolism , Signal Transduction , Diabetes Mellitus, Type 2/metabolism
3.
Am J Physiol Cell Physiol ; 324(5): C1119-C1125, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37067460

ABSTRACT

Extracellular vesicles (EVs) gain increasing attention due to their (patho-)physiological role in intercellular signaling, specifically in the communication between distant organs. Recent studies highlight a connection between the adipose tissue (AT) and the lung via (immuno-)modulatory EVs in disorders such as obesity-associated asthma and lung cancer-associated cachexia. Although lung cancer-derived EVs induce lipolysis and myotube atrophy in vivo, pathogenic effects were also reported in the opposite direction with the involvement of AT-derived EVs in cancer-promoting responses and potentially in asthma development. In contrast, the majority of studies on AT-derived EVs demonstrate their protective influence on the asthmatic lung. Beneficial effects, such as induction of anti-inflammatory pathways in vitro and in ovalbumin (OVA)-induced asthma mouse models, were particularly conveyed by EVs enriched from AT-derived mesenchymal stem/stromal cells (AT-MSCs), which therefore pose an interesting subject in possible future therapeutic applications. Likewise, AT-MSC-derived EVs exerted beneficial effects in several other pulmonary abnormalities, such as different types of lung injury or pathological changes related to chronic obstructive pulmonary disease. These contradictory findings highlight the need for extensive research to widen the understanding of the role of EVs in the development of diseases and interconnectivity between organs.


Subject(s)
Asthma , Extracellular Vesicles , Lung Neoplasms , Animals , Mice , Lung/pathology , Asthma/metabolism , Asthma/pathology , Asthma/therapy , Adipose Tissue/pathology , Extracellular Vesicles/metabolism , Lung Neoplasms/metabolism
4.
Pharmacol Ther ; 244: 108372, 2023 04.
Article in English | MEDLINE | ID: mdl-36894027

ABSTRACT

The increasing prevalence of the metabolic syndrome (MetS) is a threat to global public health due to its lethal complications. Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the MetS characterized by hepatic steatosis, which is potentially progressive to the inflammatory and fibrotic nonalcoholic steatohepatitis (NASH). The adipose tissue (AT) is also a major metabolic organ responsible for the regulation of whole-body energy homeostasis, and thereby highly involved in the pathogenesis of the MetS. Recent studies suggest that endothelial cells (ECs) in the liver and AT are not just inert conduits but also crucial mediators in various biological processes via the interaction with other cell types in the microenvironment both under physiological and pathological conditions. Herein, we highlight the current knowledge of the role of the specialized liver sinusoidal endothelial cells (LSECs) in NAFLD pathophysiology. Next, we discuss the processes through which AT EC dysfunction leads to MetS progression, with a focus on inflammation and angiogenesis in the AT as well as on endothelial-to-mesenchymal transition of AT-ECs. In addition, we touch upon the function of ECs residing in other metabolic organs including the pancreatic islet and the gut, the dysregulation of which may also contribute to the MetS. Finally, we highlight potential EC-based therapeutic targets for human MetS, and NASH based on recent achievements in basic and clinical research and discuss how to approach unsolved problems in the field.


Subject(s)
Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Metabolic Syndrome/metabolism , Endothelial Cells/metabolism , Liver/metabolism , Liver Cirrhosis/complications
5.
Stem Cell Res Ther ; 13(1): 358, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35883188

ABSTRACT

INTRODUCTION: Human mesenchymal stromal cells (MSCs) have immunomodulatory, anti-inflammatory, and tolerogenic effects. Long-term in vitro expansion of MSCs to generate clinical grade products results in the accumulation of senescent-functionally impaired MSCs. Markers to assess the 'senescent load' of MSC products are needed. METHODS: Early and late passage human adipose tissue (AT) MSCs from pediatric and adult donors were characterized using established senescent markers [i.e., MSC size, granularity, and autofluorescence by flow cytometry; ß-galactosidase staining (SA-ß-gal); CDKN2A and CDKN1A by qRT-PCR]. In gene set enrichment analysis, DPP4 (also known as adenosine deaminase complexing protein 2 or CD26) was found as a prominent dysregulated transcript that was increased in late passage MSC(AT). This was confirmed in a larger number of MSC samples by PCR, flow cytometry, Western blotting, and immunofluorescence. In vitro immunopotency assays compared the function of CD26high and CD26low MSC(AT). The effect of senolytics on the CD26high subpopulation was evaluated in senescent MSC(AT). RESULTS: Late passage MSC(AT) had a senescence transcriptome signature. DPP4 was the most differentially enriched gene in senescent MSCs. Late passage senescent MSC(AT) had higher CD26 surface levels and total protein abundance. Moreover, CD26 surface levels were higher in early passage MSC(AT) from adults compared to pediatric donors. CD26 abundance correlated with established senescence markers. CD26high MSC(AT) had reduced immunopotency compared to CD26low MSC(AT). Senolytic treatment induced MSC apoptosis, which decreased the frequencies of CD26high MSC(AT). CONCLUSIONS: DPP4 gene expression and DPP4/CD26 protein abundance are markers of replicative senescence in MSC(AT). Samples enriched in CD26high MSC(AT) have reduced immunopotency and CD26high MSCs are reduced with senolytics.


Subject(s)
Dipeptidyl Peptidase 4 , Mesenchymal Stem Cells , Adipose Tissue/metabolism , Adult , Biomarkers/metabolism , Cell Proliferation/genetics , Cells, Cultured , Cellular Senescence , Child , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/pharmacology , Humans , Mesenchymal Stem Cells/metabolism
6.
Article in English | MEDLINE | ID: mdl-34886216

ABSTRACT

Polycystic ovary syndrome (PCOS) is a commonly occurring endocrine disorder characterized by hirsutism, anovulation, and polycystic ovaries. Often comorbid with insulin resistance, dyslipidemia, and obesity, it also carries significant risk for the development of cardiovascular and metabolic sequelae, including diabetes and metabolic syndrome. The relationship between central obesity and the development of insulin resistance is widely verified. Adipose tissue excess and the coexistent dysregulation of adipocyte functions directly contribute to the pathogenesis of the metabolic complications observed in women with PCOS. In the light of these evidence, the most therapeutic option prescribed to obese women with PCOS, regardless of the phenotype e from the severity of clinical expression, is lifestyle correction by diet and physical activity. The aim of this study is to evaluate the beneficial effects of ketogenic diet in 17 obese women with PCOS. Our results showed that the ketogenic diet inducing therapeutic ketosis, improves the anthropometric and many biochemical parameters such as LH, FSH, SHBG, insulin sensitivity and HOMA index. In addition, it induces a reduction in androgenic production, whereas the contextual reduction of fat mass reduced the acyclic production of estrogens deriving from the aromatization in the adipose tissue of the androgenic excess, with an improvement of the LH/FSH ratio. This is the first study on the effects of the ketogenic diet on PCOS, however, further studies are needed to elucidate the mechanism underlying ketogenic diet effects.


Subject(s)
Diet, Ketogenic , Insulin Resistance , Polycystic Ovary Syndrome , Body Mass Index , Female , Humans , Insulin , Obesity/complications , Overweight
7.
Int J Mol Sci ; 21(9)2020 May 02.
Article in English | MEDLINE | ID: mdl-32370212

ABSTRACT

Adipose tissue is a multifunctional organ involved in many physiological and metabolic processes through the production of adipokines and, in particular, adiponectin. Caloric restriction is one of the most important strategies against obesity today. The very low-calorie ketogenic diet (VLCKD) represents a type of caloric restriction with very or extremely low daily food energy consumption. This study aimed to investigate the physiological effects of a VLCKD on anthropometric and biochemical parameters such as adiponectin levels, as well as analyzing oligomeric profiles and cytokine serum levels in obese subjects before and after a VLCKD. Twenty obese subjects were enrolled. At baseline and after eight weeks of intervention, anthropometric and biochemical parameters, such as adiponectin levels, were recorded. Our findings showed a significant change in the anthropometric and biochemical parameters of these obese subjects before and after a VLCKD. We found a negative correlation between adiponectin and lipid profile, visceral adipose tissue (VAT), C-reactive protein (CRP), and pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), which confirmed the important involvement of adiponectin in metabolic and inflammatory diseases. We demonstrated the beneficial short-term effects of a VLCKD not only in the treatment of obesity but also in the establishment of obesity-correlated diseases.


Subject(s)
Adiponectin/metabolism , Caloric Restriction/methods , Cytokines/blood , Diet, Ketogenic , Inflammation Mediators/blood , Obesity/diet therapy , Adult , Anthropometry/methods , C-Reactive Protein/metabolism , Female , Humans , Intra-Abdominal Fat/metabolism , Lipids/blood , Male , Middle Aged , Obesity/blood , Obesity/metabolism
8.
Methods Mol Biol ; 2032: 115-127, 2019.
Article in English | MEDLINE | ID: mdl-31522416

ABSTRACT

The human obese subcutaneous adipose tissue (SAT) contributes to systemic and B cell intrinsic inflammation, reduced B cell responses, and increased secretion of autoimmune antibodies. Immune cells are recruited to the SAT by chemokines released by both adipocytes and infiltrating immune cells. We describe here the characterization of B lymphocytes from the SAT and blood (control) of obese females undergoing weight reduction surgeries (breast reduction or panniculectomy). We show how to isolate the immune cells from the blood and SAT, how to characterize B cells and their subsets, and how to measure markers of activation and/or transcription factors in SAT-derived B cells and B cell subsets. We also show how to evaluate other immune cell types infiltrating the SAT, including T cells, NK cells, monocyte/macrophages, in order to measure relative proportions of these cell types as compared to the blood.


Subject(s)
Autoantibodies/immunology , B-Lymphocytes/immunology , Immunophenotyping/methods , Subcutaneous Fat/immunology , Adipocytes/immunology , Autoantibodies/isolation & purification , Humans , Inflammation/immunology , Insulin Resistance/immunology
9.
Interdiscip Toxicol ; 9(1): 17-24, 2016 Mar.
Article in English | MEDLINE | ID: mdl-28652843

ABSTRACT

Adipocyte dysfunction may be a critical link between obesity and insulin resistance as a result of abnormal fat storage and mobilization. Adipocytes uniquely secrete adipokines and cytokines, such as leptin and TNFα, wich promote insulin sensitivity. Previously we reported insulin-signaling related altered gene expression in animals exposed to 2-Aminoanthracene (2AA). 2AA is an amino-substituted polycyclic aromatic hydrocarbon used in manufacturing dyes, chemicals, inks, resins, and polyurethanes. The objective of this study was to examine the inflammation related effects of 2AA exposure from gestation to postnatal period on dams that ingested 2AA. To examine 2AA effects, pregnant dams were assigned into dose regimens of 2AA. Dams were fed 2AA contaminated diet during the period of gestation and postpartum. The expression of key gene transcripts reported to be important in mediating inflammatory processes was examined via quantitative RT-PCR. Histologic examination of adipose tissue (AT) was also carried out to understand the anatomy of AT due to 2AA exposure during gestation and two weeks postpartum. Examination of the adipose tissue for microscopic changes revealed no alterations between control and low-dose animals. However, AT of the high-dose animals was infiltrated by increased numbers of CD68+mononuclear cells (macrophages) and small numbers of eosinophils and mast cells, consistent with inflammation. In addition, analysis of the mRNA expression of cytokines and adipokines demonstrated the importance of inflammation in AT dysfunction. For instance, TNFα, LEPTIN and IL-6 transcripts were relatively more expressed in the low dose animals than in the high dose and control rats. At the protein level, however, high amounts of cytokines were noted. The effects of 2AA on pregnant dams appear to be more pronounced in the high dose group than in the low dose group, possibly indicating increased susceptibility of rat offspring within this group to elicit a diabetic-type response.

SELECTION OF CITATIONS
SEARCH DETAIL