Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 223
Filter
1.
Small Methods ; : e2400921, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39049688

ABSTRACT

Low-energy visible-light-activated carbon dots (CDs)-based afterglow materials are difficult to realize due to the inherent aromatic carbon with high-energy absorption and the lack of effective regulation. Here, a new strategy for visible-light-activated CDs is proposed by combining dual-confinement and surface-ionization, which employs NaOH for additional confinement and surface ionization of CDs in a single boric acid (BA) matrix. The comparison experiments show that: i) shifting the excitation from UV-light to vis-light is realized by enhancing the low-energy surface states n→π* transition of the CDs by surface ionization of NaOH. ii) CDs are additionally protected by a more stable Na─O ionic bond after NaOH confinement, resulting in a brighter afterglow. iii) the energy gap (ΔEST) between the lowest singlet and triplet states is gradually shortened as increasing NaOH content, facilitating intersystem crossing, prolonging the lifetime of triplet excitons and efficiency. Further, vis-light-excited colorful afterglow powders are fabricated based on Förster Resonant Energy Transfer by combining the fluorescent dye 5-carboxytetramethylrhodamine. Finally, advanced white-light-activated time-resolved anti-counterfeiting and intelligent traffic flashing signs are realized. The work may shed new light on the design of low-energy-activated afterglow materials and broaden the application scenarios in the daily lives of human society.

2.
Angew Chem Int Ed Engl ; : e202411588, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054700

ABSTRACT

Organic ultralong room temperature phosphorescence (OURTP) materials capable of combining various emission behaviors for diversified optoelectronic properties and applications have recently gained a vigorous development, but it remains a forbidden challenge in designing OURTP molecules with hybrid local and charge-transfer (HLCT) feature, possibly due to the elevated difficulties in simultaneously meeting the stringent requirements of both HLCT and OURTP emitters. Here, through introducing multiple heteroatoms into one-dimensional fused ring of coumarin with moderate charge transfer perturbation in donor-π-acceptor architecture, we demonstrate a HLCT-featured OURTP molecule showing both promoted fluorescence with a quantum yield of 77% in solution and long-lived OURTP with a lifetime of 251 ms in conventional host material used in electroluminescent device. Thus, efficient OURTP organic light-emitting diodes (OLEDs) were fabricated, exhibiting bright electroluminescence with an exciton utilization efficiency of 85% and yellow OURTP lasting over 2 s for afterglow. Impressively, the HLCT OURTP-OLEDs can be further optimized to reach an unprecedented total external quantum efficiency (EQE) of ~12% and OURTP EQE up to 3.11%, representing the highest performance among the reported OURTP-OLEDs. These impressive results highlight the significance to fuse HLCT and OURTP together in enriching OURTP materials and improving the afterglow OLED performances.

3.
Angew Chem Int Ed Engl ; : e202409514, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987891

ABSTRACT

Circularly polarized long afterglow (CPLA) attracts great interests in multi-disciplinary fields with significant potentials in optical multiplexing applications, but achieving full-color and white CPLA is still challenging. The present contribution reports the first success in utilizing circularly polarized phosphorescence energy transfer (CPP-ET) combined with chirality-selective absorption (CSA) to construct full-color and white CPLA materials. Blue CPLA with luminescence dissymmetry factor (glum) of 3×10-2 is firstly obtained via the CSA effect of chiral helical polyacetylene and blue ultralong afterglow of inorganic phosphor BP. Significantly, full-color and white CPLA films are prepared by simply blending different fluorophores into the blue-CPLA films via CPP-ET. Benefited from the persistent luminescence of BP, the lifetimes of the fluorophores increase from nanoseconds to minutes, and ultralong full-color CPLA emissions lasting for more than 20 min are realized with glum of 10-3. Also noticeably, chiral optoelectronic devices, multi-dimension information encryption and chiral logic gate are developed based on the full-color tunable CPLA-active materials. The established strategy provides a universal platform for future development of CPLA-active materials with great applications.

4.
ACS Appl Mater Interfaces ; 16(28): 36763-36773, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38973076

ABSTRACT

Sulfur dots are a new class of recently developed nonmetallic luminescent nanomaterials with various potential applications. Herein, we synthesized sulfur dots using a mild chemical etching method and then modified the structural features of the as-synthesized sulfur dots using a slow and defined solvent-assisted aggregation process. This increases the particle size and overall crystallinity along with the modifications of the surface functional groups, which eventually show a new emission band at longer wavelengths. Detailed photophysical and temperature-dependent luminescence studies confirmed that the new emissive state evolves due to interparticle interactions in the excited state. Furthermore, the occurrence of a new emissive state in a longer-wavelength region helped reduce the energy gap between the lowest excited singlet state and the lowest excited triplet state in modified sulfur dots, resulting in an aqueous stable room-temperature phosphorescence/afterglow emission through efficient intersystem crossing. This typical efficacious afterglow emission directly shows the potential applicability of structurally modified sulfur dots in encryption devices and can also be potentially effective in light emitting diodes (LED) and sensing devices.

5.
Molecules ; 29(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38998941

ABSTRACT

Long-afterglow materials have a broad of applications in optoelectronic devices, sensors, medicine and other fields due to their excellent luminescent properties. The host-guest long-afterglow MOFs material combines the advantages of multi-component characteristics and the stability of MOFs, which improves its luminous performance and expands its other properties. This review introduces the classification, synthesis and application of host-guest MOFs materials with long afterglow. Due to their rigid frames and multi-channel characteristics, MOFs can load common guest materials including rare earth metals, organic dyes, carbon dots, etc. The synthesis methods of loading guest materials into MOFs include solvothermal synthesis, post-encapsulation, post-modification, etc. Those long-afterglow host-guest MOFs have a wide range of applications in the fields of sensors, information security and biological imaging.

6.
Molecules ; 29(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38999187

ABSTRACT

Organic room temperature afterglow (ORTA) can be categorized into two key mechanisms: continuous thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP), both of which involve a triplet excited state. However, triplet excited states are easily quenched by non-radiative transitions due to oxygen and molecular vibrations. Solid-phase systems provide a conducive environment for triplet excitons due to constrained molecular motion and limited oxygen permeation within closely packed molecules. The stimulated triplet state tends to release energy through radiative transitions. Despite numerous reports on RTP in solid-phase systems in recent years, the complexity of these systems precludes the formulation of a universal theory to elucidate the underlying principles. Several strategies for achieving ORTA luminescence in the solid phase have been developed, encompassing crystallization, polymer host-guest doping, and small molecule host-guest doping. Many of these systems exhibit luminescent responses to various physical stimuli, including light stimulation, mechanical stimuli, and solvent vapor exposure. The appearance of these intriguing luminescent phenomena in solid-phase systems underscores their significant potential applications in areas such as light sensing, biological imaging, and information security.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124742, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38950474

ABSTRACT

Afterglow materials face limitations in color variety, low luminosity, and stability. Thus, developing materials with adjustable afterglow color, increased photoluminescence (PL) intensity, and enhanced stability is crucial. This paper reports the fabrication of a series of core-shell composites, CPB@SMSO@SiO2, which combine Sr2MgSi2O7: Eu2+, Dy3+ (SMSO) and lead halide perovskite quantum dots (CsPbBr3/CPB PeQDs) through a process involving in-situ growth and hydrolytic coating. The SMSO in the composite can absorb 365 nm UV light and then emit 470 nm light, which can be absorbed by the CsPbBr3 PeQDs, resulting in an overall increase in the PL intensity of the composite. The afterglow color can be turned from green to blue by adjusting the ratio of SMSO and CsPbBr3. Furthermore, the stability of the composites is improved by the SiO2 shell layer formed by hydrolysis of tetramethyl orthosilicate (TMOS). This study presents an opportunity to develop innovative afterglow materials.

8.
Adv Healthc Mater ; : e2401159, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822543

ABSTRACT

As an alternative to tissue adhesives, photochemical tissue bonding is investigated for advanced wound healing. However, these techniques suffer from relatively slow wound healing with bleeding and bacterial infections. Here, the versatile attributes of afterglow luminescent particles (ALPs) embedded in dopamine-modified hyaluronic acid (HA-DOPA) patches for accelerated wound healing are presented. ALPs enhance the viscoelastic properties of the patches, and the photoluminescence and afterglow luminescence of ALPs maximize singlet oxygen generation and collagen fibrillogenesis for effective healing in the infected wounds. The patches are optimized to achieve the strong and rapid adhesion in the wound sites. In addition, the swelling and shrinking properties of adhesive patches contribute to a nonlinear behavior in the wound recovery, playing an important role as a strain-programmed patch. The protective patch prevents secondary infection and skin adhesion, and the patch seamlessly detaches during wound healing, enabling efficient residue clearance. In vitro, in vivo, and ex vivo model tests confirm the biocompatibility, antibacterial effect, hemostatic capability, and collagen restructuring for the accelerated wound healing. Taken together, this research collectively demonstrates the feasibility of HA-DOPA/ALP patches as a versatile and promoting solution for advanced accelerated wound healing, particularly in scenarios involving bleeding and bacterial infections.

9.
Sci Rep ; 14(1): 14782, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926480

ABSTRACT

Classic psychedelics and MDMA have a colorful history of recreational use, and both have recently been re-evaluated as tools for the treatment of psychiatric disorders. Several studies have been carried out to assess potential long-term effects of a regular use on cognition, delivering distinct results for psychedelics and MDMA. However, to date knowledge is scarce on cognitive performance during acute effects of those substances. In this systematic review and meta-analysis, we investigate how cognitive functioning is affected by psychedelics and MDMA during the acute drug effects and the sub-acute ("afterglow") window. Our quantitative analyses suggest that acute cognitive performance is differentially affected by psychedelics when compared to MDMA: psychedelics impair attention and executive function, whereas MDMA primarily affects memory, leaving executive functions and attention unaffected. Our qualitative analyses reveal that executive functioning and creativity may be increased during a window of at least 24 h after the acute effects of psychedelics have subsided, whereas no such results have been observed for MDMA. Our findings may contribute to inform recommendations on harm reduction for recreational settings and to help fostering differential approaches for the use of psychedelics and MDMA within a therapeutic framework.


Subject(s)
Cognition , Hallucinogens , N-Methyl-3,4-methylenedioxyamphetamine , Humans , Hallucinogens/pharmacology , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , N-Methyl-3,4-methylenedioxyamphetamine/adverse effects , N-Methyl-3,4-methylenedioxyamphetamine/administration & dosage , Cognition/drug effects , Executive Function/drug effects , Attention/drug effects , Memory/drug effects
10.
Carbohydr Polym ; 341: 122309, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876712

ABSTRACT

Room temperature phosphorescence (RTP) materials with wood as framework are highly desirable due to their extended afterglow, high haze and good mechanical properties, which is highly desired in lighting materials. However, it remains challenging to obtain wood-based RTP materials that possess on-demand afterglow colors while maintaining high transparency across the entire visible spectrum. In this study, long-persistent phosphorescent transparent composite with tunable afterglow color is fabricated by infiltrating delignified wood with phosphors (including carbazole, naphthalene, and pyrene) doped polymethyl methacrylate (PMMA). Such RTP woods indicate remarkable transparency, over 70 %, and an extended afterglow duration of up to 8 s. Here, PMMA serves as rigid surrounding to suppress the non-radiative transition of phosphors to ensure phosphorescence, and to fulfill in the wood lumen to match the refractive index of cellulose for transparency. By formulating phosphors with different types and concentration ratios, transparent woods with diverse phosphorescence colors, and white emission, are successfully achieved. Furthermore, the RTP woods demonstrate dynamically tunable afterglow colors over time based on the varied phosphorescent lifetimes. Characterized by their high transparency and tunable colors, these natural wood-based RTP materials have great potentials for application in the fields of LED materials, optics, and building materials.

11.
J Colloid Interface Sci ; 672: 142-151, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38833734

ABSTRACT

The remarkable optical properties of carbon dots, particularly their tunable room-temperature phosphorescence, have garnered significant interest. However, challenges such as aggregation propensity and complex phosphorescence control via energy level manipulation during synthesis persist. Addressing these issues, we present a facile gel platform for tunable afterglow materials. This involves chemically cross-linking biomass-derived silicon-doped carbon dots with carboxymethylcellulose and incorporating non-precious metal salts (BaCl2, CaCl2, MgCl2, ZnCl2, ZnBr2, ZnSO4) to enhance phosphorescence. Metal salts boost intersystem crossing via spin-orbit coupling, elevating triplet state transitions and activating phosphorescence. Chemical bonding and salt-induced coordination/electrostatic interactions establish confinement effects, suppressing non-radiative transitions. Diverse salt-gel interactions yield gels with tunable phosphorescence lifetimes (9.48 ms to 32.13-492.39 ms), corresponding to afterglow durations ranging from 3.20 to 11.86 s. With its broad tunability and high recognition, this gel material exhibits promising potential for dynamic multilevel anti-counterfeiting applications.

12.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792203

ABSTRACT

Narrowband afterglow materials display interesting functions in high-quality anti-counterfeiting and multiplexed bioimaging. However, there is still a limited exploration of these afterglow materials, especially for those with a full width at half maxima (FWHM) around 30 nm. Here, we report the fabrication of narrowband organic/inorganic hybrid afterglow materials via energy transfer technology. Coronene (Cor) with a long phosphorescence feature and broad phosphorescence band is selected as the donor for energy transfer, and inorganic quantum dots (QDs) of CdSe/ZnS with a narrowband emission are used as acceptors. Upon doping into the organic matrix, the resultant three-component materials exhibit a narrowband afterglow with an afterglow lifetime of approximately 3.4 s and an FWHM of 31 nm. The afterglow wavelength of the afterglow materials can be controlled by the QDs. This work based on organic/inorganic hybrids provides a facile approach for developing multicolor and narrowband afterglow materials, as well as opens a new way for expanding the features of organic afterglow for multifunctional applications. It is expected to rely on narrowband afterglow emitters to solve the "spectrum congestion" problem of high-density information storage in optical anti-counterfeiting and information encryption.

13.
Adv Mater ; 36(30): e2404888, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38738587

ABSTRACT

Confining luminophores into modified hydrophilic matrices or polymers is a straightforward and widely used approach for afterglow bioimaging. However, the afterglow quantum yield and lifetime of the related material remain unsatisfactory, severely limiting the using effect especially for deep-tissue time-resolved imaging. This fact largely stems from the dilemma between material biocompatibility and the quenching effect of water environment. Herein an in situ metathesis promoted doping strategy is presented, namely, mixing ≈10-3 weight ratio of organic-emitter multicarboxylates with inorganic salt reactants, followed by metathesis reactions to prepare a series of hydrophilic but water-insoluble organic-inorganic doping afterglow materials. This strategy leads to the formation of edible long-afterglow photoluminescent materials with superior biocompatibility and excellent bioimaging effect. The phosphorescence quantum yield of the materials can reach dozens of percent (the highest case: 66.24%), together with the photoluminescent lifetime lasting for coupes of seconds. Specifically, a long-afterglow barium meal formed by coronene salt emitter and BaSO4 matrix is applied into animal experiments by gavage, and bright stomach afterglow imaging is observed by instruments or mobile phone after ceasing the photoexcitation with deep tissue penetration. This strategy allows a flexible dosage of the materials during bioimaging, facilitating the development of real-time probing and theranostic technology.


Subject(s)
Biocompatible Materials , Animals , Mice , Biocompatible Materials/chemistry , Luminescent Agents/chemistry , Humans , Optical Imaging
14.
ACS Appl Mater Interfaces ; 16(19): 25415-25421, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38696539

ABSTRACT

It is of practical significance to develop polymer-based room-temperature phosphorescence (RTP) materials with ultralong lifetime and multicolor afterglow. Herein, the benzocarbazole derivatives were selected and combined with a poly(vinyl alcohol) (PVA) matrix by a coassembly strategy. Owing to the hydrogen-bonding interactions between benzocarbazole derivatives and the PVA matrix, the nonradiative transition and the quenching of triplet excitons are effectively inhibited. Therefore, the maximum phosphorescence emission lifetime of 2202.17 ms from ABfCz-PVA and the maximum phosphorescence quantum efficiency of 34.97% from ABtCz-PVA were obtained, respectively. In addition, commercially available dye molecules were selected to construct phosphorescent resonance energy transfer (PRET) systems for energy acceptors, enabling full-color afterglow emission in blue, green, yellow, red, and even white. Based on the characteristics of prepared RTP materials, multifunctional applications to flexibility, information encryption, and erasable drawing were deeply explored.

15.
Adv Mater ; 36(31): e2403775, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38738804

ABSTRACT

Achieving thermochromic afterglow (TCAG) in a single material for advanced information encryption remains a significant challenge. Herein, TCAG in carbon dots (CDs)-inked paper (CDs@Paper) is achieved by tuning the temperature-dependent dual-mode afterglow of room temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF). The CDs are synthesized through thermal treatment of levofloxacin in melting boric acid with postpurification via dialysis. CDs@Paper exhibit both TCAG and excitation-dependent afterglow color properties. The TCAG of CDs@Paper exhibits dynamic color changes from blue at high temperatures to yellow at low temperatures by adjusting the proportion of the temperature-dependent TADF and phosphorescence. Notably, two-photon afterglow in CDs-based afterglow materials and time-dependent two-photon afterglow colors are achieved for the first time. Moreover, leveraging the opposite emission responses of phosphorescence and TADF to temperature, CDs@Paper demonstrate TCAG with temperature-sensing capabilities across a wide temperature range. Furthermore, a CDs@Paper-based 3D code containing color and temperature information is successfully developed for advanced dynamic information encryption.

16.
Chemistry ; 30(36): e202400950, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38655749

ABSTRACT

It is usually believed that doping with photosensitizers capable of generating singlet oxygen (1O2) plays a pivotal role in enhancing the afterglow performance of semiconducting polymer nanoparticles (SPNs). However, the effect of doping photosensitizer bearing electron-withdrawing groups has not been reported. Here we report the effect of doping with six photosensitizers possessing different electron-withdrawing groups on the afterglow performance of SPNs using poly[(9,9-di(2-ethylhexyl)-9H-fluo-rene-2,7-vinylene)-co-(1-methoxy-4-(2-ethylhexyloxy)-2,5-phenylenevinylene)] (PF-MEHPPV) as substrate. It was found that the afterglow performance of SPNs was significantly influenced by doping with photosensitizers bearing electron-withdrawing groups. For the doped photosensitizers with strong electron-withdrawing groups, the stronger the electron-withdrawing ability of the group, the worse of the afterglow performance of the SPN regardless of the 1O2 generation ability of the photosensitizer. When the doped photosensitizer exhibited weak or none electron-withdrawing effect, the 1O2 generation ability of the photosensitizer played a dominant role on the afterglow performance of the SPNs. This work deepens the understanding of the design and synthesis of SPNs with different afterglow properties.

17.
Adv Mater ; 36(25): e2313749, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38578135

ABSTRACT

Developing coordination complexes (such as metal-organic frameworks, MOFs) with circularly polarized luminescence (CPL) is currently attracting tremendous attention and remains a significant challenge in achieving MOF with circularly polarized afterglow. Herein, MOFs-based circularly polarized afterglow is first reported by combining the chiral induction approach and tuning the afterglow times by using the auxiliary ligands regulation strategy. The obtained chiral R/S-ZnIDC, R/S-ZnIDC(bpy), and R/S-ZnIDC(bpe)(IDC = 1H-Imidazole-4,5-dicarboxylate, bpy = 4,4'-Bipyridine, bpe = trans-1,2-Bis(4-pyridyl) ethylene) containing a similar structure unit display different afterglow times with 3, 1, and <0.1 s respectively which attribute to that the longer auxiliary ligand hinders the energy transfer through the hydrogen bonding. The obtained chiral complexes reveal a strong chiral signal, obvious photoluminescence afterglow feature, and strong CPL performance (glum up to 3.7 × 10-2). Furthermore, the photo-curing 3D printing method is first proposed to prepare various chiral MOFs based monoliths from 2D patterns to 3D scaffolds for anti-counterfeiting and information encryption applications. This work not only develops chiral complexes monoliths by photo-curing 3D printing technique but opens a new strategy to achieve tunable CPL afterglow in optical applications.

18.
Angew Chem Int Ed Engl ; : e202402915, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38569128

ABSTRACT

Sustainable carbon dots based on cellulose, particularly carboxymethyl cellulose carbon dots (CMCCDs), were confined in an inorganic network resulting in CMCCDs@SiO2. This resulted in a material exhibiting long afterglow covering a time frame of several seconds also under air. Temperature-dependent emission spectra gave information on thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) while photocurrent experiments provided a deeper understanding of charge availability in the dark period, and therefore, its availability on the photocatalyst surface. The photo-ATRP initiator, ethyl α-bromophenylacetate (EBPA), quenched the emission from the millisecond to the nanosecond time frame indicating participation of the triplet state in photoinduced electron transfer (PET). Both free radical and controlled radical polymerization based on photo-ATRP protocol worked successfully. Metal-free photo-ATRP resulted in chain extendable macroinitiators based on a reductive mechanism with either MMA or in combination with styrene. Addition of 9 ppm Cu2+ resulted in Mw/Mn of 1.4 while an increase to 72 ppm improved uniformity of the polymers; that is Mw/Mn=1.03. Complementary experiments with kerria laca carbon dots confined materials, namely KCDs@SiO2, provided similar results. Deposition of Cu2+ (9 ppm) on the photocatalyst surface explains better uniformity of the polymers formed in the ATRP protocol.

19.
Angew Chem Int Ed Engl ; 63(25): e202403927, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38632085

ABSTRACT

All-inorganic metal halides with afterglow emission have attracted increasing attention due to their significantly longer afterglow duration and higher stability compared to their organic-inorganic hybrid counterparts. However, their afterglow colors have not yet reached the blue spectral region. Here, we report all-inorganic copper-doped Rb2AgBr3 single crystals with ultralong blue afterglow (>300 s) by modulating defect states through doping engineering. The introduction of copper(I) ions into Rb2AgBr3 facilitates the formation of bromine vacancies, thus increasing the density of trap states available for charge storage and enabling bright, persistent emission after ceasing the excitation. Moreover, cascade energy transfer between distinct emissive centers in the crystals results in ultra-broadband photoluminescence, not only covering the whole white light with near-unity quantum yield but also extending into the near-infrared region. This 'cocktail' of exotic light-emission properties, in conjunction with the excellent stability of copper-doped Rb2AgBr3 crystals, allowed us to demonstrate their implementation to solid-state lighting, night vision, and intelligent anti-counterfeiting.

20.
Angew Chem Int Ed Engl ; 63(25): e202404177, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38634766

ABSTRACT

Long-lasting radioluminescence scintillators have recently attracted substantial attention from both research and industrial communities, primarily due to their distinctive capabilities of converting and storing X-ray energy. However, determination of energy-conversion kinetics in these nanocrystals remains unexplored. Here we present a strategy to probe and unveil energy-funneling kinetics in NaLuF4:Mn2+/Gd3+ nanocrystal sublattices through Gd3+-driven microenvironment engineering and Mn2+-mediated radioluminescence profiling. Our photophysical studies reveal effective control of energy-funneling kinetics and demonstrate the tunability of electron trap depth ranging from 0.66 to 0.96 eV, with the corresponding trap density varying between 2.38×105 and 1.34×107 cm-3. This enables controlled release of captured electrons over durations spanning from seconds to 30 days. It allows tailorable emission wavelength within the range of 520-580 nm and fine-tuning of thermally-stimulated temperature between 313-403 K. We further utilize these scintillators to fabricate high-density, large-area scintillation screens that exhibit a 6-fold improvement in X-ray sensitivity, 22 lp/mm high-resolution X-ray imaging, and a 30-day-long optical memory. This enables high-contrast imaging of injured mice through fast thermally-stimulated radioluminescence readout. These findings offer new insights into the correlation of radioluminescence dynamics with energy-funneling kinetics, thereby contributing to the advancement of high-energy nanophotonic applications.

SELECTION OF CITATIONS
SEARCH DETAIL