Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters











Publication year range
1.
F1000Res ; 13: 40, 2024.
Article in English | MEDLINE | ID: mdl-39246826

ABSTRACT

Background: Jute fiber is one of the most versatile natural fibers that is widely used as a raw material for packaging, textiles, and construction; and as a reinforcement in composite materials for heavy-duty applications. In the past, acid hydrolysis and mechanical treatment via the ball milling method were common in the extraction of cellulose nanofiber (CNFs) from natural plant fibers. However, there are some drawbacks of using those methods where there will be a huge quantity of acidic wastewater generated when the acid hydrolysis method is performed. Method: This study investigated the potential use of a combination of chemical and mechanical methods in the extraction of jute CNFs. Through this method, the jute fibers were first chemically treated using sodium hydroxide (NaOH), sodium chlorite (NaClO 2) and sulphuric acid (H 2SO 4) to remove the non-cellulosic elements followed by mechanical milling by using a planetary ball mill. Results: The shape and size of the obtained CNFs were observed under a field emission scanning electron microscope (FESEM). This study revealed that jute CNFs were successfully extracted through the combination of chemical and mechanical treatment methods where the obtained CNFs reveal themselves in smooth fibrous morphology with a diameter of 23 nm and 150-200nm in length. Conclusions: Jute cellulose nanofibers were successfully drawn out from raw jute fibers by means of a combination of chemical and mechanical treatment. The results obtained confirmed that the chemomechanical method is an effective technique for isolating the CNFs and its potential use as reinforcement material was explained.


Subject(s)
Cellulose , Nanofibers , Cellulose/chemistry , Nanofibers/chemistry , Sulfuric Acids/chemistry , Sodium Hydroxide/chemistry , Chlorides/chemistry
2.
Luminescence ; 39(8): e4830, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39129381

ABSTRACT

Fabricating metal oxide nanoparticles has garnered much attention lately because creating safe chemicals, sustainable materials, economic processes, and renewable resources is becoming increasingly important. This research shows how TiO2 nanoparticles (NPs) could be generated in an ecologically responsible way using waste coconut husk with the help of tender coconut. This extract functions as both a reducing agent and a sealing agent. The investigation of TiO2 NPs exploited ultraviolet (UV), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and field-emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray (EDX) methods. The germicidal properties of TiO2 NPs against food-borne pathogenic strains were studied using the agar well method. Employing Congo red pigment, the photodecomposition behavior was investigated. The TiO2 NPs produced had a crystallite size measuring 16.2 nm. The average grain size of the sample, as measured by FE-SEM inspection, falls within the range of 15 to 25 nm. Impressive anti-germ effects against food-borne germs like Gram-positive (Staphylococcus aureus and Listeria monocytogenes), Gram-negative (Salmonella typhimurium and Escherichia coli) bacteria, and fungi (Candida albicans and Aspergillus niger) have been proved by the sustainable fabrication of TiO2 NPs. The catalytic effectiveness of Congo red decreased by 88% after 90 min. The findings suggest that sustainable synthesis of TiO2 NPs is an effective tool for food-borne germicides and photodecomposition behaviors.


Subject(s)
Cocos , Titanium , Titanium/chemistry , Titanium/pharmacology , Cocos/chemistry , Waste Products/analysis , Metal Nanoparticles/chemistry , Luminescence , Food Microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Microbial Sensitivity Tests , Photochemical Processes , Particle Size
3.
Int J Biol Macromol ; 278(Pt 1): 134630, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39142481

ABSTRACT

Banana fibers are a sustainable material with natural mechanical strength and antibacterial properties. These fibers are extracted from the large amount of waste produced by banana pseudo stems annually. However, despite their numerous advantages, their stiffness and rough texture impede their full use in the textile. This research investigates the degumming treatment of banana fibers using enzyme combination and chemical methods to achieve spinnable soft banana fibers. An L9 orthogonal array was used in a Taguchi design of the experiment to optimize the process parameters. For enzyme combination degumming, the experimental setup comprised different quantities of hemicellulase, laccase, amylase, and pectinase; for chemical degumming, varied amounts of sodium hydroxide (NaOH) were used. The results indicate that enzyme-based degumming procedures produce better results than chemical treatments. Optimum enzyme combinations for various fiber qualities were found using the Taguchi design of experiments. These combinations included Hemicellulase 5 %, Laccase 5 %, Amylase 3 %, and Hemicellulase 5 %, Laccase 3 %, Pectinase 5 %. Without degrading the cellulose structure, these ideal enzyme combinations produced fibers with lower lignin content and higher cellulose percentages, moisture content, and tenacity values. By determining the most efficient enzyme combinations and their effects on fiber qualities, the study offers sustainable fiber processing methods for textile grade banana fiber.

4.
Article in English | MEDLINE | ID: mdl-38795299

ABSTRACT

Natural fibres have attracted more attention compared with synthetic fibre because they exhibit several benefits over synthetic fibre, such as being cost-effective, readily available, and lightweight apart from offering better mechanical properties. Corn husk fibres being a natural crop fibre have attracted more attention due to their renewability and biodegradability. Corn husk is an outer protective layer of maize which is generally discarded as waste. However, this agro-waste can be utilized exclusively for various applications with a sustainable approach by extracting fibres out of them. This paper aims to revolutionize the usage of corn husk fibres in conventional as well as technical textile industries by enlisting various application areas. A comprehensive understanding of corn husk fibre extraction techniques and their effect on various fibre properties are also discussed. These properties are compared with properties of other natural fibres, to enable the possibility of converting corn husk fibres into different textile forms such as yarn, woven and nonwoven fabric, and composites. This will fulfill the increasing demand for natural fibre along with biodegradability and reduced petroleum dependency while contributing to the purpose-driven use of agro waste.

5.
Sci Rep ; 14(1): 7901, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38570706

ABSTRACT

Cassava peel ash (CPA) is an abundant agricultural byproduct that has shown promise as an additional cementitious material in concrete manufacturing. This research study aims to optimize the incorporation of CPA in concrete blends using the central composite design (CCD) methodology to determine the most effective combination of ingredients for maximizing concrete performance. The investigation involves a physicochemical analysis of CPA to assess its pozzolanic characteristics. Laboratory experiments are then conducted to assess the compressive and flexural strengths of concrete mixtures formulated with varying proportions of CPA, cement, and aggregates. The results show that a mix ratio of 0.2:0.0875:0.3625:0.4625 for cement, CPA, fine, and coarse aggregates, respectively, yields a maximum compressive strength of 28.51 MPa. Additionally, a maximum flexural strength of 10.36 MPa is achieved with a mix ratio of 0.2:0.0875:0.3625:0.525. The experimental data were used to develop quadratic predictive models, followed by statistical analyses. The culmination of the research resulted in the identification of an optimal concrete blend that significantly enhances both compressive and flexural strength. To ensure the reliability of the model, rigorous validation was conducted using student's t-test, revealing a strong correlation between laboratory findings and simulated values, with computed p-values of 0.9987 and 0.9912 for compressive and flexural strength responses, respectively. This study underscores the potential for enhancing concrete properties and reducing waste through the effective utilization of CPA in the construction sector.

6.
Polymers (Basel) ; 16(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38611260

ABSTRACT

New composites made of natural fiber polymers such as wasted date palm surface fiber (DPSF) and pineapple leaf fibers (PALFs) are developed in an attempt to lower the environmental impact worldwide and, at the same time, produce eco-friendly insulation materials. Composite samples of different compositions are obtained using wood adhesive as a binder. Seven samples are prepared: two for the loose natural polymers of PALF and DPSF, two for the composites bound by single materials of PALF and DPSF using wood adhesive as a binder, and three composites of both materials and the binder with different compositions. Sound absorption coefficients (SACs) are obtained for bound and hybrid composite samples for a wide range of frequencies. Flexural moment tests are determined for these composites. A thermogravimetric analysis test (TGA) and the moisture content are obtained for the natural polymers and composites. The results show that the average range of thermal conductivity coefficient is 0.042-0.06 W/(m K), 0.052-0.075 W/(m K), and 0.054-0.07 W/(m K) for the loose fiber polymers, bound composites, and hybrid composites, respectively. The bound composites of DPSF have a very good sound absorption coefficient (>0.5) for almost all frequencies greater than 300 Hz, followed by the hybrid composite ones for frequencies greater than 1000 Hz (SAC > 0.5). The loose fiber polymers of PALF are thermally stable up to 218 °C. Most bound and hybrid composites have a good flexure modulus (6.47-64.16 MPa) and flexure stress (0.43-1.67 Mpa). The loose fiber polymers and bound and hybrid composites have a low moisture content below 4%. These characteristics of the newly developed sustainable and biodegradable fiber polymers and their composites are considered promising thermal insulation and sound absorption materials in replacing synthetic and petrochemical insulation materials in buildings and other engineering applications.

7.
ACS Appl Bio Mater ; 7(5): 3014-3032, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38597359

ABSTRACT

Emission of greenhouse gases and infectious diseases caused by improper agro-waste disposal has gained significant attention in recent years. To overcome these hurdles, agro-waste can be valorized into valuable bioactive compounds that act as reducing or stabilizing agents in the synthesis of nanomaterials. Herein, we report a simple circular approach using Citrus reticulata Blanco (C. reticulata) waste (peel powder/aqueous extract) as green reducing and capping/stabilizing agents and Zn nitrate/acetate precursors to synthesize ZnO nanoparticles (NPs) with efficient antimicrobial and photocatalytic activities. The obtained NPs crystallized in a hexagonal wurtzite structure and differed clearly in their morphology. UV-vis analysis of the nanoparticles showed a characteristic broad absorption band between 330 and 414 nm belonging to ZnO NPs. Fourier transform infrared (FTIR) spectroscopy of ZnO NPs exhibited a Zn-O band close to 450 cm-1. The band gap values were in the range of 2.84-3.14 eV depending on the precursor and agent used. The crystallite size obtained from size-strain plots from measured XRD patterns was between 7 and 26 nm, with strain between 16 and 4%. The highly crystalline nature of obtained ZnO NPs was confirmed by clear ring diffraction patterns and d-spacing values of the observed lattice fringes. ZnNPeelMan_400 and ZnNExtrMan showed good stability, as the zeta potential was found to be around -20 mV, and reduced particle aggregation. Photoluminescence analysis revealed different defects belonging to oxygen vacancies (VO+ and VO+2) and zinc interstitial (Zni) sites. The presence of oxygen vacancies on the surface of ZnAcExtrMan_400 and ZnAcPeelMan_400 increased antimicrobial activity, specifically against Gram-negative bacteria Escherichia coli (E. coli) and Salmonella enteritidis (S. enteritidis). ZnNExtrMan with a minimal inhibitory concentration of 0.156 mg/mL was more effective against Gram-positive bacteria Staphylococcus aureus (S. aureus), revealing a high influence of particle size and shape on antimicrobial activity. In addition, the photocatalytic activity of the ZnO NPs was examined by assessing the degradation of acid green dye in an aqueous solution under UV light irradiation. ZnAcPeelMan_400 exhibited excellent photocatalytic activity (94%) within 90 min after irradiation compared to other obtained ZnO NPs.


Subject(s)
Anti-Bacterial Agents , Citrus , Materials Testing , Microbial Sensitivity Tests , Particle Size , Plant Extracts , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Citrus/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Catalysis , Plant Extracts/chemistry , Plant Extracts/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Photochemical Processes , Metal Nanoparticles/chemistry , Green Chemistry Technology
8.
Polymers (Basel) ; 16(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38475363

ABSTRACT

Cutin, one of the main structural components of tomato peels, is a waxy biopolymer rich in hydroxylated fatty acids. In this study, 10,16-dihydroxyhexadecanoic acid (10,16-diHHDA) was extracted and isolated from tomato peels and exploited to develop fully crosslinked polyesters as potential candidates for replacing fossil-based metal protective coatings. A preliminary screening was conducted to select the base formulation, and then a design of experiments (DoE) was used as a methodology to identify the optimal composition to develop a suitable coating material. Different formulations containing 10,16-diHHDA and other biorefinery monomers, including 2,5-furandicarboxylic acid, were considered. To this end, all polyesters were characterized through differential scanning calorimetry (DSC) and gel content measurements to determine their Tg value and crosslinking efficiency. Compositions exhibiting the best trade-off between Tg value, chemical resistance, and sufficiently high 10,16-diHHDA content between 39 and 48 wt.% were used to prepare model coatings that were characterized for assessing their wettability, scratch hardness, chemical resistance, and adhesion to metal substrates. These polyester coatings showed a Tg in the range of 45-55 °C, a hydrophobic behavior with a water contact angle of around 100°, a good solvent resistance (>100 MEK double rubs), and an adhesion strength to steel higher than 2 MPa. The results obtained confirmed the potential of cutin-based resins as coatings for metal protection, meeting the requirements for ensuring physicochemical properties of the final product, as well as for optimizing the valorization of such an abundant agri-food waste as tomato peels.

9.
Waste Manag ; 177: 135-145, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38325014

ABSTRACT

The surging affluent in society, concomitant with increasing global demand for electrical and electronic devices, has led to a sharp rise in e-waste generation. E-wastes contain significant amounts of precious metals, such as gold, which can be recovered and reused, thus reducing the environmental impact of mining new metals. Selective recovery using sustainable and cost-effective materials and methods is therefore vital. This study undertook a detailed evaluation of low-cost biomass-derived activated carbon (AC) for selective recovery of Au from simulated e-waste streams. Utilizing high-performance synthesized H2SO4-AC, the adsorption mechanisms were explicated through a combination of characterization techniques, i.e., FE-SEM, BET, TGA, XRD, FTIR, XPS, and DFT simulations to conceptualize the atomic and molecular level interactions. Optimization of coordination geometries between model H2SO4-AC and anionic complexes revealed the most stable coordination for AuCl4- (binding energy, Eb = -4064.15 eV). The Au selectivity was further enhanced by reduction of Au(III) to Au(0), as determined by XRD and XPS. The adsorption reaction was relatively fast (∼5h), and maximum Au uptake reached 1679.74 ± 37.66 mg/g (among highest), achieved through adsorption isotherm experiments. Furthermore, a mixture of 0.5 M thiourea/1 M HCl could effectively elute the loaded Au and regenerate the spent AC. This study presents radical attempts to examine in detail, the synergistic effects of H2SO4 activation on biomass-derived ACs for selective recovery of Au from complex mixtures. The paper therefore describes a novel approach for the selective recovery of Au from e-wastes using multifunctional biomass-derived H2SO4-AC.


Subject(s)
Charcoal , Gold , Biomass , Sulfuric Acids
10.
Front Microbiol ; 15: 1357302, 2024.
Article in English | MEDLINE | ID: mdl-38374917

ABSTRACT

The adverse effects of waste generation on the environment and public health have raised global concerns. The utilization of waste as a raw material to develop products with enhanced value has opened up novel prospects for promoting environmental sustainability. Biosurfactants obtained from agro-industrial waste are noteworthy due to their sustainability and environmental friendliness. Microorganisms have been employed to generate biosurfactants as secondary metabolites by making use of waste streams. The utilization of garbage as a substrate significantly reduces the expenses associated with the process. Furthermore, apart from reducing waste and offering alternatives to artificial surfactants, they are extensively employed in bioremediation, food processing, agriculture, and various other industrial pursuits. Bioremediation of heavy metals and other metallic pollutants mitigated through the use of bacteria that produce biosurfactants which has been the more recent research area with the aim of improving its quality and environmental safety. Moreover, the production of biosurfactants utilizing agricultural waste as a raw material aligns with the principles of waste minimization, environmental sustainability, and the circular economy. This review primarily focuses on the production process and various types of biosurfactants obtained from waste biomass and feedstocks. The subsequent discourse entails the production of biosurfactants derived from various waste streams, specifically agro-industrial waste.

11.
Heliyon ; 10(1): e24081, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38234881

ABSTRACT

The generation of agro-waste as a result of increase in agro and food processing activities is on the increase due to rapid increase in human population. Hence the need to eliminate these waste by converting them into a useful product or energy source. This work presents the use of bio-char from hydrothermal liquefaction of breadfruit pulp to produce bio-briquettes with cassava starch as a binder. The response surface method using design expert was used to design the experiment with particle size, press pressure and binder dosage as factors, to determine the parameter combination that will produce briquettes of high energy density. The briquette with the highest calorific value 26.75 MJ/kg was produced at the parameter combination of 450 mm-6 particle size, 5 MPa press pressure, and 20 % binder dosage. The ultimate analysis carried on the produced briquette gave carbon, hydrogen, nitrogen and sulphur content of 47.22 %, 3.88 %, 0.69 %, and 0.42 % respectively, with oxygen content of 4.79 % by percentage mass difference. While the proximate analysis gave moisture, ash, volatile matter, and fixed carbon content of 7.8 %, 3.9 %, 43.7 %, and 44.6 % respectively. Other characterization test carried out gave combustion rate of 4.5 g/min, ignition time of 3.5 min, density of 0.86 g/cm3, compressive strength of 8.31 N/mm2, shatter index of 0.89, and hydrophobicity of 61.3 %. These findings shows that briquettes produced with bio-char from HTL of breadfruit pulp can be used as solid fuel for domestic and mini-industrial heating purposes, as well as eliminate waste from processing of breadfruit.

12.
Waste Manag ; 175: 101-109, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38194795

ABSTRACT

This study aims at valorizing the residual aqueous phase from hydrothermal carbonization (HTC) of Sicilian agro-wastes in order to enhance the hydrochar recovery, positively affecting the process energy balance. Process waters (PW) obtained from HTC and co-HTC using orange peel waste and fennel plant residues were used as recycled solvent in experiments carried out at the temperatures of 180 and 230 °C. The results showed that an additional hydrochar formation was promoted during recirculation of solvent, leading to average increments of solid mass yield of 10.5 wt% for tests conducted at 180 °C and 3.9 wt% for 230 °C. After five consecutive recirculation phases in co-HTC runs, the hydrochar yield increased up to 18.2 wt%. The low H/C and O/C atomic ratios values, found after recirculation, indicate that organic acids, accumulated in the PW, may catalyze the process and promote the biomass deoxygenation by boosting dehydration and decarboxylation. The recovered PWs from conversion steps with deionized water were also carbonized in absence of the solid feedstock in order to quantify their contribution in hydrochar formation during recirculation and thus the synergistic interactions. After recirculation, energy recovery averagely augmented by more than threefold, showing that the proposed strategy could significantly improve the sustainability of HTC.


Subject(s)
Conservation of Energy Resources , Water , Carbon/chemistry , Temperature , Solvents
13.
Int J Biol Macromol ; 259(Pt 2): 129273, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211922

ABSTRACT

In this paper, lignocellulosic fibers and cellulose microfibrils (CMFs) were extracted from palmyra fruit peduncle waste and investigated as naturally derived cellulosic materials for their potential use as reinforcement materials in composite applications. The physicochemical, mechanical, and thermal properties of the extracted fiber were studied. Physical and morphological analysis results revealed an extracted fiber diameter of 82.5 µm with a very rough surface, providing excellent interfacial bonding performance with the polymer matrix. Chemical, mechanical, and thermal results showed that the fibers consist mainly of cellulose as their crystallized phase, with a cellulose content of 56.5 wt% and a tensile strength of 693.3 MPa, along with thermal stability up to 252 °C. The chemically extracted CMFs exhibit a short, rough-surfaced, cylindrical cellulose structure with a diameter range of 10-15 µm. These CMFs demonstrate excellent thermal stability, withstanding temperatures up to 330 °C. Furthermore, the formation of CMFs is evident from a substantial increase in the crystallinity index, which increased from 58.2 % in the raw fibers to 78.2 % in the CMFs. FT-IR analysis further confirms the successful removal of non-cellulosic materials through chlorine-free chemical treatments. These findings strongly support the potential use of extracted fibers and CMFs as reinforcement materials in polymers.


Subject(s)
Fruit , Microfibrils , Fruit/chemistry , Spectroscopy, Fourier Transform Infrared , Cellulose/chemistry , Polymers/analysis
14.
Environ Res ; 248: 118297, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38281560

ABSTRACT

In this work, harvested mushroom substrate (HMS) has been explored for the first time through a comprehensive optimization study for the green synthesis of silver nanoparticles (AgNPs). A multiple response central composite design with three parameters: pH of the reaction mixture, temperature, and incubation period at three distinct levels was employed in the optimization study. The particle size of AgNPs, UV absorbance, and the percentage of Ag/Cl elemental ratio were considered as the response parameters. For each response variable examined the model used was found to be significant (P < 0.05). The ideal conditions were: pH 8.9, a temperature of 59.4 °C, and an incubation period of 48.5 h. The UV-visible spectra of AgNPs indicated that the absorption maxima for AgNP-3 were 414 nm, 420 for AgNPs-2, and 457 for AgNPs-1. The XRD analysis of AgNPs-3 and AgNPs-2 show a large diffraction peak at ∼38.2°, ∼44.2°, ∼64.4°, and ∼77.4°, respectively, which relate to the planes of polycrystalline face-centered cubic (fcc) silver. Additionally, the XRD result of AgNPs-1, reveals diffraction characteristics of AgCl planes (111, 200, 220, 311, 222, and 400). The TEM investigations indicated that the smallest particles were synthesized at pH 9 with average diameters of 35 ± 6 nm (AgNPs-3). The zeta potentials of the AgNPs are -36 (AgNPs-3), -28 (AgNPs-2), and -19 (AgNPs-1) mV, respectively. The distinct IR peak at 3400, 1634, and 1383 cm-1 indicated the typical vibration of phenols, proteins, and alkaloids, respectively. The AgNPs were further evaluated against gram (+) strain Bacillus subtilis (MTCC 736) and gram (-) strain Escherichia coli (MTCC 68). All of the NPs tested positive for antibacterial activity against both bacterial strains. The study makes a sustainable alternative to disposing of HMS to achieve the Sustainable Development Goals (SDGs).


Subject(s)
Agaricales , Metal Nanoparticles , Silver/chemistry , Agaricales/metabolism , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
15.
Arch Pharm (Weinheim) ; 357(5): e2300742, 2024 May.
Article in English | MEDLINE | ID: mdl-38290054

ABSTRACT

Aging and agro-waste are major challenges. Natural ingredients are preferred in skincare. This study intended to isolate the essential oils (EO) from the leftover peels obtained from three commonly edible Citrus species fruit peels, namely Citrus paradisi (grapefruit), Citrus sinensis (sweet orange), and Citrus deliciosa (mandarin). Gas chromatography/mass spectrometry analysis identified volatile constituents in EO and headspace aroma. Multivariate analysis distinguished between the three species. The antiaging effects of Citrus EO were assessed in vitro and in silico, studying volatile interactions with target enzymes. C. sinensis peels had the highest oil yield, rich in monoterpenes. C. paradisi and C. deliciosa contained sesquiterpenes. Limonene dominated the hydrodistilled EO: 94.50% in C. paradisi, 96.80% in C. sinensis, and 80.66% in C. deliciosa. Unsupervised multivariate analysis of Citrus species revealed that  d-limonene, γ-terpinene, and ß-pinene are the key phytochemical markers contributing to their diverse chemical composition. C. paradisi exhibited the highest enzyme inhibitory activity, with IC50 values of 12.82, 27.58, and 18.16 µg/mL for tyrosinase, elastase, and collagenase, respectively. In silico studies showed that the volatiles can inhibit the tested antiaging enzymes. According to these findings, the investigated agro-waste might slow aging in skin care.


Subject(s)
Citrus , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Citrus/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Multivariate Analysis , Fruit/chemistry , Humans
16.
Prep Biochem Biotechnol ; 54(4): 573-586, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37729443

ABSTRACT

Four laccase-producing bacteria were found in soil samples from the Similipal Biosphere Reserve in Odisha, according to the current study. The isolates (SLCB1 to SLCB4) were evaluated for their laccase-producing ability in LB broth supplemented with guaiacol. The ABTS assay was performed to assess the laccase activity. The bacterium Mammaliicoccus sciuri shows the highest laccase activity i.e., 0.5125 U/L at the optimized conditions of pH 5.5, temperature 32.5 °C, ABTS concentration of 0.75 µl with an incubation time of 9 d. Laccase activity of M. sciuri grown in Sawdust was significantly increased in comparison to that in other agro wastes. The partially purified laccase enzyme after ammonium sulfate precipitation and dialysis showed a molecular weight of ∼58.5 kDa as determined by SDS-PAGE. A decolorization efficiency of 66.67% was recorded for the dye crystal violet after 1 h treatment with dialyzed laccase enzyme compared with phenol red, brilliant blue, and methylene blue.


Subject(s)
Benzothiazoles , Coloring Agents , Laccase , Sulfonic Acids , Coloring Agents/chemistry , Laccase/chemistry , Gentian Violet , Soil , Temperature , Hydrogen-Ion Concentration
17.
Int J Biol Macromol ; 254(Pt 1): 127687, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37890740

ABSTRACT

The exploration of potential bio-fillers for bio-film application is a promising approach to ensure biodegradable, eco-friendly, good-quality materials with high-performance applications. This is a comprehensive study executed to establish the utility of an agro-waste Tamarindus indica seeds for microcrystalline cellulose production and to assess its feasibility for biofilm fabrication. The extraction was carried out through consecutive chemical-mediated alkalization, acid hydrolysis and bleaching. The isolated microcrystalline cellulose from Tamarindus indica seeds (TSMCC) was characterized through chemical, thermal and morphological characterization to validate the cellulose contribution, thermal resistance, and compatibility of the material. The physical parameters as density and yield percentage were assessed to evaluate its light-weight utility and economic productivity. These examinations revealed that TSMCC has good specific properties such as high cellulose content (90.57 %), average density (1.561 g/cm3), feasible average roughness (12.161 nm), desired particle size (60.40 ± 21.10 µm), good crystallinity (CI-77.6 %) and thermal stability (up to 230 °C); which are worthwhile to consider TSMCC for bio-film formulation. Subsequently, bio-films were formulated by reinforcing TSMCC in polylactic acid (PLA) matrix and the mechanical properties of the bio-films were then studied to establish the efficacy of TSMCC. It is revealed that the properties of pure PLA film increased after being incorporated with TSMCC, where 5 %TSMCC addition showed greater impact on crystalline index (26.16 % to 39.62 %), thermal stability (333oc to 389 °C), tensile strength (36.11 ± 2.90 MPa to 40.22 ± 3.22 MPa) and modulus (2.62 ± 0.55GPa to 4.15 ± 0.53GPa). In light of all promising features, 5 % TSMCC is recommended as a potential filler reinforcement for the groundwork of good quality bio-films for active packaging applications in future.


Subject(s)
Tamarindus , Tamarindus/chemistry , Cellulose/chemistry , Polyesters/chemistry , Seeds/chemistry
18.
Int J Biol Macromol ; 254(Pt 1): 127848, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37924905

ABSTRACT

The urgent need for eco-friendly and cost-effective cellulose paper substrates in thermal management for biomedical electronic devices has driven the exploration of agro-waste materials. In this study, jackfruit peduncle waste was utilized as a precursor to produce a hybrid of AgNPs-tempo-mediated oxidation cellulose strands (AgNPs-TOCS) through acid hydrolysis, TEMPO oxidation, and an in-situ generation process. The resulting hybrid AgNPs-TOCS composite exhibited a cylindrical cellulose structure with a diameter of 27.3 µm, on which spherical AgNPs with a diameter of 16.3 nm were embedded. This hybrid AgNPs-TOCS displayed an impressive inhibition zone diameter against E. coli bacteria (15.2 nm) and exhibited excellent thermal stability up to 269 °C. Furthermore, the AgNPs-TOCS composite paper substrate was fabricated using non-solvent techniques, and its mechanical, thermal, and electrical properties were investigated. This composite paper substrate exhibits good tensile strength (65 ± 2 MPa), in-plane thermal conductivity (5.8 ± 0.2 W/(m·K)), and electrical resistivity (0.0575 KΩ·m). These findings strongly suggest that this type of composite paper substrate holds promise for applications in thermal management within the field of biomedical electronics.


Subject(s)
Artocarpus , Metal Nanoparticles , Cellulose/chemistry , Anti-Bacterial Agents/pharmacology , Silver/chemistry , Escherichia coli , Metal Nanoparticles/chemistry , Dental Materials/pharmacology
19.
Int J Biol Macromol ; 256(Pt 2): 128470, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040160

ABSTRACT

The current research was concerned with the use of abundant agro-waste 'de-oiled rice bran (DORB)' as a sustainable substrate to produce α-amylase followed by several targets like process parameter optimization for augmented production and immobilization. In addition, we have also focused on investigating the application of DORB_amy as an efficient laundry detergent additive and textile desizer. The best production was recorded at pH 8.0 at 37 °C after 96 h incubation with 1.5 % (w/v) maltose. The DORB_amy has optimum activity at pH 9.0 at 60 °C with a Km and Vmax of 0.31 mg/mL and 222.22 mg/mL/min respectively. The catalytic performance of DORB_amy was further enhanced after immobilization in 3.0 % calcium alginate beads with 61.95 ± 0.17 % of operational stability after five continuous reaction cycles. The findings showed excellent performance of DORB_amy in cleaning starchy stains. The washing performance of enzyme and detergent together was better than their individual performance which increases the application of α-amylase as a laundry detergent additive. About 17.34 % weight loss or desizing was done by DORB_amy with an 8-9 TEGEWA rating. The reported biochemical features like thermostability, alkalophilic and detergent-stable nature of the DORB_amy make it industrially fit with great significance.


Subject(s)
Oryza , alpha-Amylases , alpha-Amylases/metabolism , Detergents , Oryza/metabolism , Food , Starch , Hydrogen-Ion Concentration , Enzyme Stability
20.
Waste Manag Res ; : 734242X231219643, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38158835

ABSTRACT

This article aims to identify how project management can enable the introduction of circular economy (CE) in agribusiness. The methodological strategy used was the systematic literature review. The research corpus consisted of 70 articles selected from the Web of Science and Scopus databases. For screening, the Rayyan platform was used, and the analysis process was carried out by categorization and grouping of terms and concepts with the help of Excel software. The evidence shown the efforts to reduce agro-waste and how to transform them into by-products. Barriers, challenges, benefits and opportunities for making the CE viable in agribusiness are presented. Three ways of projecting the CE in agribusiness are identified: (1) project management processes in the integration of the CE in agribusiness, (2) innovative projects and new business models as drivers of the CE in agribusiness and (3) 4.0 technologies integrating the CE in agribusiness based on project management methodologies. Results are limited to terms used in search mechanisms. This research contributes towards identifying project management processes that can enable the CE in agribusiness, particularly by identifying the impacts of the CE in different business areas. The research also contributes in a practical way by providing insights on ways to make the CE viable in agribusiness through project management.

SELECTION OF CITATIONS
SEARCH DETAIL