Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
CEN Case Rep ; 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37897632

ABSTRACT

Paired box protein 2 (PAX2) gene variant causes renal coloboma syndrome (MIM#120330). Further, they are associated with focal segmental glomerulosclerosis and characterized by basement membrane changes similar to Alport syndrome.Herein, we report an 8-year-old boy who presented with proteinuria and decreased renal function. His paternal uncle has focal segmental glomerulosclerosis and renal failure, and his paternal grandmother has renal failure and is receiving peritoneal dialysis. Further, his father has stage 2 chronic kidney disease. At 3 years of age, his serum creatinine-estimated glomerular filtration rate was 40-50 mL/min/1.73 m2. At 8 years of age, his renal function further decreased and he had proteinuria (urinary protein/Cr 3.39 g/g Cr). Renal histopathology showed oligonephronia and focal segmental glomerulosclerosis. A partial basket-weave pattern, similar to Alport syndrome, was also observed on a transmission electron microscope, and low-vacuum scanning electron microscopy revealed coarse meshwork changes in the glomerular basement membrane. Genetic analysis revealed a PAX2 heterozygous variant (NM_003987.4:c.959C  >  G), a nonsense variant in which the serine at position 320 changes to a stop codon, in our patient and his father. PAX2 is a transcription factor that is important for the podocyte variant. However, podocytes with PAX2 gene variants may cause abnormal basement membrane production and repair, thereby resulting in Alport-like changes.

2.
Pediatr Nephrol ; 38(2): 439-449, 2023 02.
Article in English | MEDLINE | ID: mdl-35723736

ABSTRACT

BACKGROUND: Pathogenic mutations in the non-muscle single-headed myosin, myosin 1E (Myo1e), are a rare cause of pediatric focal segmental glomerulosclerosis (FSGS). These mutations are biallelic, to date only reported as homozygous variants in consanguineous families. Myo1e regulates the actin cytoskeleton dynamics and cell adhesion, which are especially important for podocyte functions. METHODS: DNA and RNA sequencing were used to identify novel MYO1E variants associated with FSGS. We studied the effects of these variants on the localization of Myo1e in kidney sections. We then analyzed the clinical and histological observations of all known pathogenic MYO1E variants. RESULTS: We identified a patient compound heterozygote for two novel variants in MYO1E and a patient homozygous for a deletion of exon 19. Computer modeling predicted these variants to be disruptive. In both patients, Myo1e was mislocalized. As a rule, pathogenic MYO1E variants map to the Myo1e motor and neck domain and are most often associated with steroid-resistant nephrotic syndrome in children 1-11 years of age, leading to kidney failure in 4-10 years in a subset of patients. The ultrastructural features are the podocyte damage and striking diffuse and global Alport-like glomerular basement membrane (GBM) abnormalities. CONCLUSIONS: We hypothesize that MYO1E mutations lead to disruption of the function of podocyte contractile actin cables resulting in abnormalities of the podocytes and the GBM and dysfunction of the glomerular filtration barrier. The characteristic clinicopathological data can help to tentatively differentiate this condition from other genetic podocytopathies and Alport syndrome until genetic testing is done. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Glomerulosclerosis, Focal Segmental , Nephritis, Hereditary , Podocytes , Humans , Glomerular Basement Membrane/pathology , Glomerulosclerosis, Focal Segmental/pathology , Mutation , Myosin Type I/genetics , Myosin Type I/metabolism , Nephritis, Hereditary/genetics , Phenotype , Podocytes/pathology , Proteinuria/complications
SELECTION OF CITATIONS
SEARCH DETAIL