Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
Environ Toxicol Pharmacol ; 107: 104435, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38588759

ABSTRACT

This study investigated the impact of neonatal exposure to endocrine-active compounds (EACs): flutamide (antiandrogen), 4-tert-octylphenol (an estrogenic compound), and methoxychlor (an organochlorine insecticide exhibiting estrogenic, antiestrogenic and antiandrogenic activities) on androgen production within porcine adrenal glands. The expression of genes related to androgen synthesis and the level of androgen production were analyzed (i) in the adrenal glands of piglets exposed to EACs during the first 10 days of life (in vivo study), and (ii) in adrenal explants from sow-fed or formula-fed 10-day-old piglets incubated with EACs (ex vivo study). EACs affected the expression of genes linked to adrenal androgen biosynthesis. The prominent effect of methoxychlor on downregulation of StAR, CYP11A1 and HSD3B and upregulation of CYP17A1 and SULT2A1 were demonstrated. Furthermore, our study revealed divergent response to EACs between sow-fed and formula-fed piglets, suggesting that natural feeding may provide protection against adverse EACs effects, particularly those interfering with estrogens action.


Subject(s)
Androgens , Methoxychlor , Animals , Female , Swine , Methoxychlor/metabolism , Endocrine System , Estrogens , Androgen Antagonists/toxicity
2.
J Steroid Biochem Mol Biol ; 236: 106436, 2024 02.
Article in English | MEDLINE | ID: mdl-38035948

ABSTRACT

Testosterone biosynthesis from its precursor androstenedione is thought to be exclusively catalysed by the 17ß-hydroxysteroid dehydrogenases-HSD17B3 in testes, and AKR1C3 in the ovary, adrenal and peripheral tissues. Here we show for the first time that the glucocorticoid activating enzyme 11ß-hydroxysteroid dehydrogenase type 1 (HSD11B1) can also catalyse the 17ß-reduction of androstenedione to testosterone, using a combination of in vitro enzyme kinetic assays, mathematical modelling, and molecular docking analysis. Furthermore, we show that co-expression of HSD11B1 and AKR1C3 increases testosterone production several-fold compared to the rate observed with AKR1C3 only, and that HSD11B1 is likely to contribute significantly to testosterone production in peripheral tissues.


Subject(s)
Androstenedione , Testosterone , Female , Humans , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Glucocorticoids , Molecular Docking Simulation , Hydroxyprostaglandin Dehydrogenases , 3-Hydroxysteroid Dehydrogenases , 17-Hydroxysteroid Dehydrogenases/genetics
3.
Biotechnol Appl Biochem ; 70(6): 1794-1805, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37279111

ABSTRACT

Increased androgen receptor (AR) signaling brought on by higher intratumoral androgen production and AR amplification is associated with castrate-resistant prostate cancer (CRPC). Cell proliferation in this case continues even during low expression of testosterone in the body. Aldo-keto reductase family 1 member C3 (AKR1C3) is one of the most elevated genes in CRPC and catalyzes the formation of powerful AR ligands from inactive forms. The current work aimed to use the x-ray method to investigate the ligand's crystal structure while also conducting molecular docking and molecular dynamics tests on the synthesized molecules against AKR1C3. As per the results obtained, the MM-PBSA binding energies of inhibitors 2,2'-((4-methoxyphenyl)methylene)bis(3,4-hydroxy-5,5-dimethylcyclohex-2-en-1-one is -132.456 kJ mol-1 and 2,2'-(phenylmethylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one is -81.017 kJ mol-1 . These results create a promising approach to drug design based on its fit to the structures of the receptor site rather than basing it on analogies to other active structures.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Molecular Docking Simulation , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Hydroxyprostaglandin Dehydrogenases/genetics , Hydroxyprostaglandin Dehydrogenases/metabolism , Molecular Dynamics Simulation , Cell Line, Tumor
4.
Front Oncol ; 12: 950094, 2022.
Article in English | MEDLINE | ID: mdl-36439479

ABSTRACT

Prostate cancer (PCa) is one of the most common malignancies in males globally, and its pathogenesis is significantly related to androgen. As one of the important treatments for prostate cancer, androgen deprivation therapy (ADT) inhibits tumor proliferation by controlling androgen levels, either surgically or pharmacologically. However, patients treated with ADT inevitably develop biochemical recurrence and advance to castration-resistant prostate cancer which has been reported to be associated with androgen biosynthetic and catabolic pathways. Thus, gene expression profiles and clinical information of PCa patients were collected from TCGA, MSKCC, and GEO databases for consensus clustering based on androgen biosynthetic and catabolic pathways. Subsequently, a novel prognostic model containing 13 genes (AFF3, B4GALNT4, CD38, CHRNA2, CST2, ADGRF5, KLK14, LRRC31, MT1F, MT1G, SFTPA2, SLC7A4, TDRD1) was constructed by univariate cox regression, lasso regression, and multivariate cox regression. Patients were divided into two groups based on their risk scores: high risk (HS) and low risk (LS), and survival analysis was used to determine the difference in biochemical recurrence-free time between the two. The results were validated on the MSKCC dataset and the GEO dataset. Functional enrichment analysis revealed some pivotal pathways that may have an impact on the prognosis of patients including the CDK-RB-E2F axis, G2M checkpoint, and KRAS signaling. In addition, somatic mutation, immune infiltration, and drug sensitivity analyses were performed to further explore the characteristics of HS and LS groups. Besides, two potential therapeutic targets, BIRC5 and RHOC, were identified by us in prostate cancer. These results indicate that the prognostic model may serve as a predictive tool to guide clinical treatment and provide new insight into the basic research in prostate cancer.

5.
Rev. chil. obstet. ginecol. (En línea) ; 86(6): 516-520, dic. 2021. tab
Article in Spanish | LILACS | ID: biblio-1388692

ABSTRACT

INTRODUCCIÓN Y OBJETIVO: El rol de la testosterona exógena en la función sexual femenina ha sido estudiado durante muchos años, con resultados contradictorios. En el último tiempo se ha promovido el uso de pellets de testosterona como una solución para mejorar la libido femenina, la cognición, la fuerza muscular y los sistemas cardiovascular y óseo, e incluso evitar el envejecimiento. Por ello, revisamos las publicaciones para tratar de responder si esto es una moda o el tratamiento más innovador del último tiempo. MÉTODO: Se analizaron las bases de datos PubMed/Medline, Trip Database, Cochrane, SciELO, Scopus, UpToDate, Ovid, ProQuest, Science Direct y ResearchGate. RESULTADOS: De acuerdo con la evidencia, la mejor testosterona disponible es la transdérmica y debe ser usada solo en el trastorno del deseo sexual hipoactivo (TDSH). Los trabajos que evalúan los pellets de testosterona tienen sesgos metodológicos importantes. Si bien son útiles para mejorar la función sexual femenina, producen concentraciones plasmáticas suprafisiológicas de testosterona, por lo que no se puede establecer su seguridad a largo plazo. Tampoco hay datos suficientes que avalen su uso para mejorar el rendimiento cognitivo y el bienestar general, en el tratamiento de enfermedades cardiovasculares o en la prevención de enfermedad ósea. CONCLUSIONES: La testosterona solo se recomienda en el tratamiento del TDSH por vía transdérmica. No recomendamos el uso de pellets de testosterona para el tratamiento de la disfunción sexual ni como hormona antienvejecimiento, ya que no hay estudios consistentes sobre su seguridad, eficacia y efectos adversos a largo plazo.


INTRODUCTION AND OBJECTIVE: The role of exogenous testosterone in female sexual function has been studied for many years with contradictory results. In recent times, the use of testosterone pellets has been promoted as a solution to improve female libido, cognition, muscle strength, cardiovascular system, bone and even prevent aging. Therefore, we will review the publications in order to answer whether this is a fad or the most innovative treatment of recent times. METHOD: The databases PubMed/Medline, Trip Database, Cochrane, SciELO, Scopus, UpToDate, Ovid, ProQuest, Science Direct and ResearchGate were analyzed. RESULTS: So far, the evidence best testosterone available is transdermal testosterone and that it should be used only in hypoactive sexual desire disorder (HSDD). Papers evaluating testosterone pellets have significant methodological biases. While they are useful in improving female sexual function, they produce supra-physiological plasma levels of testosterone, so their long-term safety cannot be established. There is also insufficient data to support their use in improving cognitive performance and general well-being, treatment of cardiovascular disease or prevention of bone disease. CONCLUSIONS: Testosterone is only recommended for the tratment of HSDD via the transdermal route. We do not recommended the use of testosterone pellets for the treatment of sexual dysfunction or as an anti aging hormone, as there are no consistent studies on its safety, efficacy, and long-term adverse effects.


Subject(s)
Humans , Female , Testosterone/administration & dosage , Sexual Dysfunctions, Psychological/drug therapy , Drug Implants , Androgens/biosynthesis
6.
J Clin Endocrinol Metab ; 106(3): 843-857, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33212489

ABSTRACT

CONTEXT: Disorders affecting adrenal steroidogenesis promote an imbalance in the normally tightly controlled secretion of mineralocorticoids, glucocorticoids, and androgens. This may lead to differences/disorders of sex development in the fetus, as seen in virilized girls with congenital adrenal hyperplasia (CAH). Despite the important endocrine function of human fetal adrenals, neither normal nor dysregulated adrenal steroidogenesis is understood in detail. OBJECTIVE: Due to significant differences in adrenal steroidogenesis between human and model species (except higher primates), we aimed to establish a human fetal adrenal model that enables examination of both de novo and manipulated adrenal steroidogenesis. DESIGN AND SETTING: Human adrenal tissue from 54 1st trimester fetuses were cultured ex vivo as intact tissue fragments for 7 or 14 days. MAIN OUTCOME MEASURES: Model validation included examination of postculture tissue morphology, viability, apoptosis, and quantification of steroid hormones secreted to the culture media measured by liquid chromatography-tandem mass spectrometry. RESULTS: The culture approach maintained cell viability, preserved cell populations of all fetal adrenal zones, and recapitulated de novo adrenal steroidogenesis based on continued secretion of steroidogenic intermediates, glucocorticoids, and androgens. Adrenocorticotropic hormone and ketoconazole treatment of ex vivo cultured human fetal adrenal tissue resulted in the stimulation of steroidogenesis and inhibition of androgen secretion, respectively, demonstrating a treatment-specific response. CONCLUSIONS: Together, these data indicate that ex vivo culture of human fetal adrenal tissue constitutes a novel approach to investigate local effects of pharmaceutical exposures or emerging therapeutic options targeting imbalanced steroidogenesis in adrenal disorders, including CAH.


Subject(s)
Adrenal Glands/cytology , Drug Evaluation, Preclinical/methods , Fetus/cytology , Primary Cell Culture/methods , Steroids/biosynthesis , Adrenal Glands/drug effects , Adrenal Glands/embryology , Adrenal Glands/metabolism , Adrenal Hyperplasia, Congenital/drug therapy , Adrenal Hyperplasia, Congenital/metabolism , Adrenal Hyperplasia, Congenital/pathology , Adrenocorticotropic Hormone/pharmacology , Androgens/metabolism , Cell Survival , Culture Media/chemistry , Female , Glucocorticoids/pharmacology , Humans , Ketoconazole/pharmacology , Metabolic Networks and Pathways/drug effects , Models, Biological , Pregnancy , Steroids/analysis , Steroids/metabolism
7.
Cancer Drug Resist ; 3(4): 912-929, 2020.
Article in English | MEDLINE | ID: mdl-35582223

ABSTRACT

Castration-resistant prostate cancer is the lethal form of prostate cancer and most commonly remains dependent on androgen receptor (AR) signaling. Current therapies use AR signaling inhibitors (ARSI) exemplified by abiraterone acetate, a P450c17 inhibitor, and enzalutamide, a potent AR antagonist. However, drug resistance to these agents occurs within 12-18 months and they only prolong overall survival by 3-4 months. Multiple mechanisms can contribute to ARSI drug resistance. These mechanisms can include but are not limited to germline mutations in the AR, post-transcriptional alterations in AR structure, and adaptive expression of genes involved in the intracrine biosynthesis and metabolism of androgens within the tumor. This review focuses on intracrine androgen biosynthesis, how this can contribute to ARSI drug resistance, and therapeutic strategies that can be used to surmount these resistance mechanisms.

8.
Proc Natl Acad Sci U S A ; 116(44): 22294-22299, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31611378

ABSTRACT

Androgen biosynthesis in the human fetus proceeds through the adrenal sex steroid precursor dehydroepiandrosterone, which is converted to testosterone in the gonads, followed by further activation to 5α-dihydrotestosterone in genital skin, thereby facilitating male external genital differentiation. Congenital adrenal hyperplasia due to P450 oxidoreductase deficiency results in disrupted dehydroepiandrosterone biosynthesis, explaining undervirilization in affected boys. However, many affected girls are born virilized, despite low circulating androgens. We hypothesized that this is due to a prenatally active, alternative androgen biosynthesis pathway from 17α-hydroxyprogesterone to 5α-dihydrotestosterone, which bypasses dehydroepiandrosterone and testosterone, with increased activity in congenital adrenal hyperplasia variants associated with 17α-hydroxyprogesterone accumulation. Here we employ explant cultures of human fetal organs (adrenals, gonads, genital skin) from the major period of sexual differentiation and show that alternative pathway androgen biosynthesis is active in the fetus, as assessed by liquid chromatography-tandem mass spectrometry. We found androgen receptor expression in male and female genital skin using immunohistochemistry and demonstrated that both 5α-dihydrotestosterone and adrenal explant culture supernatant induce nuclear translocation of the androgen receptor in female genital skin primary cultures. Analyzing urinary steroid excretion by gas chromatography-mass spectrometry, we show that neonates with P450 oxidoreductase deficiency produce androgens through the alternative androgen pathway during the first weeks of life. We provide quantitative in vitro evidence that the corresponding P450 oxidoreductase mutations predominantly support alternative pathway androgen biosynthesis. These results indicate a key role of alternative pathway androgen biosynthesis in the prenatal virilization of girls affected by congenital adrenal hyperplasia due to P450 oxidoreductase deficiency.


Subject(s)
17-alpha-Hydroxyprogesterone/metabolism , Androgens/biosynthesis , Antley-Bixler Syndrome Phenotype/genetics , Fetus/metabolism , Receptors, Androgen/genetics , Virilism/metabolism , Adrenal Glands/embryology , Adrenal Glands/metabolism , Androgens/genetics , Cells, Cultured , Female , Fetus/embryology , Genitalia/embryology , Genitalia/metabolism , Gonads/embryology , Gonads/metabolism , Humans , Male , Receptors, Androgen/metabolism , Sex Differentiation , Virilism/genetics
9.
J Steroid Biochem Mol Biol ; 192: 105283, 2019 09.
Article in English | MEDLINE | ID: mdl-30641225

ABSTRACT

Drugs used for the treatment of castration resistant prostate cancer (CRPC) include Abiraterone acetate (Zytiga®) and Enzalutamide (XTANDI®). However, these drugs provide clinical benefit in metastatic disease for only a brief period before drug resistance emerges. One mechanism of drug resistance involves the overexpression of type 5 17-ß-hydroxysteroid dehydrogenase (aldo-keto reductase 1C3 or AKR1C3), a major enzyme responsible for the formation of intratumoral androgens that activate the androgen receptor (AR). 3-((4-Nitronaphthalen-1-yl)amino)benzoic acid 1 is a "first-in-class" AKR1C3 competitive inhibitor and AR antagonist. Compound 1 was compared in a battery of in vitro studies with structurally related N-naphthyl-aminobenzoates, and AKR1C3 targeted therapeutics e.g. GTx-560 and ASP9521, as well as with R-bicalutamide, enzalutamide and abiraterone acetate. Compound 1 was the only naphthyl derivative that was a selective AKR1C3 inhibitor and AR antagonist in direct competitive binding assays and in AR driven reporter gene assays. GTx-560 displayed weak activity as a direct AR antagonist but had high potency in the AR reporter gene assay consistent with its ability to inhibit the co-activator function of AKR1C3. By contrast ASP9521 did not act as either an AR antagonist or block AR reporter gene activity. Compound 1 was the only compound that showed comparable potency to inhibit AKR1C3 and act as a direct AR antagonist. Compound 1 blocked the formation of testosterone in LNCaP-AKR1C3 cells, and the expression of PSA driven by the AKR1C3 substrate (4-androstene-3,17-dione) and by an AR agonist, 5α-dihydrotestosterone consistent with its bifunctional role. Compound 1 blocked the nuclear translocation of the AR at similar concentrations to enzalutamide and caused disappearance of the AR from cell lysates. R-biaclutamide and enzalutamide inhibited AKR1C3 at concentrations 200x greater than compound 1, suggesting that its bifunctionality can be explained by a shared pharmacophore that can be optimized.


Subject(s)
Aldo-Keto Reductase Family 1 Member C3/antagonists & inhibitors , Androgen Receptor Antagonists/pharmacology , Benzoates/pharmacology , Enzyme Inhibitors/pharmacology , Naphthalenes/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/chemistry , Androgen Receptor Antagonists/chemistry , Apoptosis , Benzoates/chemistry , Cell Proliferation , Enzyme Inhibitors/chemistry , Humans , Male , Naphthalenes/chemistry , Prostatic Neoplasms, Castration-Resistant/enzymology , Prostatic Neoplasms, Castration-Resistant/pathology , Tumor Cells, Cultured
10.
Zhonghua Nan Ke Xue ; 25(3): 265-271, 2019 Mar.
Article in Chinese | MEDLINE | ID: mdl-32216246

ABSTRACT

Prostate cancer is a most common malignant tumor in the male urogenital system. Currently, castration-resistant prostate cancer (CRPC) is a bottleneck in the treatment of prostate cancer, which has a very poor prognosis, with a median survival of merely 12 months. Although androgen-deprivation therapy eliminates the majority of the androgens in circulation, CRPC patients adapt to low-level androgens by synthesizing intratumoral androgens or altering androgen receptors. This review summarizes the main ways of synthesizing testosterone and dihydrotestosterone (DHT), the enzymes involved, and changes of the androgen level in different stages of CRPC. Blocking any one of the pathways of androgen biosynthesis is likely to upregulate another and lead to incomplete androgen elimination and consequently drug resistance. Therefore, identifying the pathways of androgen biosynthesis may provide an opportunity for the development of the drugs for blocking the major pathways of androgen and introtumoral androgen biosynthesis and antagonizing androgen receptors.


Subject(s)
Androgens/biosynthesis , Prostatic Neoplasms, Castration-Resistant/metabolism , Androgen Antagonists/therapeutic use , Androgen Receptor Antagonists , Dihydrotestosterone , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen , Testosterone/biosynthesis
11.
National Journal of Andrology ; (12): 265-271, 2019.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-816800

ABSTRACT

Prostate cancer is a most common malignant tumor in the male urogenital system. Currently, castration-resistant prostate cancer (CRPC) is a bottleneck in the treatment of prostate cancer, which has a very poor prognosis, with a median survival of merely 12 months. Although androgen-deprivation therapy eliminates the majority of the androgens in circulation, CRPC patients adapt to low-level androgens by synthesizing intratumoral androgens or altering androgen receptors. This review summarizes the main ways of synthesizing testosterone and dihydrotestosterone (DHT), the enzymes involved, and changes of the androgen level in different stages of CRPC. Blocking any one of the pathways of androgen biosynthesis is likely to upregulate another and lead to incomplete androgen elimination and consequently drug resistance. Therefore, identifying the pathways of androgen biosynthesis may provide an opportunity for the development of the drugs for blocking the major pathways of androgen and introtumoral androgen biosynthesis and antagonizing androgen receptors.

12.
Front Oncol ; 8: 180, 2018.
Article in English | MEDLINE | ID: mdl-29911070

ABSTRACT

Enzalutamide, a second-generation small-molecule inhibitor of the androgen receptor (AR), has been approved for patients who failed with androgen deprivation therapy and have developed castration-resistant prostate cancer. More than 80% of these patients develop bone metastases. The binding of enzalutamide to the AR prevents the nuclear translocation of the receptor, thus inactivating androgen signaling. However, prostate cancer cells eventually develop resistance to enzalutamide treatment. Studies have found resistance both in patients and in laboratory models. The mechanisms of and approaches to overcoming such resistance are significant issues that need to be addressed. In this review, we focus on the major mechanisms of acquired enzalutamide resistance, including genetic mutations and splice variants of the AR, signaling pathways that bypass androgen signaling, intratumoral androgen biosynthesis by prostate tumor cells, lineage plasticity, and contributions from the tumor microenvironment. Approaches for overcoming these mechanisms to enzalutamide resistance along with the associated problems and solutions are discussed. Emerging questions, concerns, and new opportunities in studying enzalutamide resistance will be addressed as well.

13.
Prostate ; 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29938815

ABSTRACT

BACKGROUND: Progression of castration-recurrent/resistant prostate cancer (CRPC) relies in part on dihydrotestosterone derived from intratumoral androgen metabolism. Mathematical modeling provides a valuable tool for studies of androgen metabolism in CRPC. This modeling approach integrates existing knowledge about complex biologic systems and provides a means of interrogating the effects of various interventions. We sought to model a single reaction in the androgen biosynthesis network, namely the oxidation of androsterone (AND) to androstanedione (5α-dione) by four 3α-oxidoreductase enzymes, as an initial effort to establish the feasibility of our modeling approach. METHODS: Models were constructed for two cell culture systems, a non-prostate cancer cell line (CV-1) and a prostate cancer cell line (LAPC-4), using the SimBiology app (version 5.3) in MATLAB (version 8.6). The models included components for substrate (AND), product (5α-dione), each of the four enzymes, and each of the four enzyme-substrate complexes. Each enzymatic reaction consisted of a reversible enzyme-substrate binding step and an irreversible catalysis step. Rates of change for each component were described using ordinary differential equations. RESULTS: Mathematical models were developed with model parameter values derived from literature sources or from existing experimental data, which included gene expression measurements and substrate and product concentrations determined using liquid chromatography-tandem mass spectrometry. The models for both cell lines adequately described substrate and product concentrations observed after 12 h treatment with AND. CONCLUSIONS: This modeling approach represents an adaptable, extensible and mechanistic framework that reflects androgen metabolism. The models can be expanded systematically to describe the complex androgen metabolic pathways important for study of novel therapies for CRPC.

14.
FEBS Lett ; 592(13): 2282-2288, 2018 07.
Article in English | MEDLINE | ID: mdl-29888793

ABSTRACT

Cytochrome P450 17A1 (CYP17A1) catalyzes the synthesis of androgens from the steroid precursors pregnenolone and progesterone in a two-step reaction process: allylic hydroxylation and carbo-carbon bond scission. Cytochrome b5 (Cyt-b5 ) is a stimulator of the second lyase reaction, but the chemical mechanism is unclear. We have shown previously that this stimulatory effect requires redox active Cyt-b5 . To investigate the origin of the lyase reaction enhancement by electron transfer from Cyt-b5 , we measured the reduction rates of oxy-ferrous substrate-bound CYP17A1 by Cyt-b5 and by cytochrome P450 reductase (CPR) coincorporated in Nanodiscs using stopped flow spectroscopy. We observed that Cyt-b5 reduces oxy-ferrous CYP17A1 10-fold faster than CPR, with the rate similar to that observed in a ternary complex of all three proteins.


Subject(s)
Androgens/biosynthesis , Cytochromes b5/physiology , Lyases/metabolism , Oxygen/metabolism , Steroid 17-alpha-Hydroxylase/metabolism , Animals , Catalysis , Catalytic Domain , Escherichia coli , Ferrous Compounds/chemistry , Ferrous Compounds/metabolism , Humans , Lyases/chemistry , Oxidation-Reduction , Oxygen/chemistry , Protein Binding , Rabbits , Rats
15.
Mol Cell Endocrinol ; 452: 64-73, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28501574

ABSTRACT

Children with adrenocortical tumors (ACTs) often present with virilization due to high tumoral androgen production, with dihydrotestosterone (DHT) as most potent androgen. Recent work revealed two pathways for DHT biosynthesis, the classic and the backdoor pathway. Usage of alternate routes for DHT production has been reported in castration-resistant prostate cancer, CAH and PCOS. To assess whether the backdoor pathway may contribute to the virilization of pediatric ACTs, we investigated seven children suffering from androgen producing tumors using steroid profiling and immunohistochemical expression studies. All cases produced large amounts of androgens of the classic and/or backdoor pathway. Variable expression of steroid enzymes was observed in carcinomas and adenomas. We found no discriminative pattern. This suggests that enhanced androgen production in pediatric ACTs is the result of deregulated steroidogenesis through multiple steroid pathways. Thus future treatments of ACTs targeting androgen overproduction should consider these novel steroid production pathways.


Subject(s)
Adrenal Cortex Neoplasms/metabolism , Adrenocortical Carcinoma/metabolism , Androgens/biosynthesis , Ovarian Neoplasms/metabolism , Virilism/metabolism , Adolescent , Adrenal Cortex Neoplasms/pathology , Adrenocortical Carcinoma/pathology , Androgens/blood , Child , Dihydrotestosterone/blood , Female , Humans , Immunohistochemistry , Infant , Li-Fraumeni Syndrome/genetics , Male , Ovarian Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Virilism/pathology
16.
Mol Cell Endocrinol ; 441: 116-123, 2017 02 05.
Article in English | MEDLINE | ID: mdl-27471004

ABSTRACT

Recently, dihydrotestosterone biosynthesis through the backdoor pathway has been implicated for the human testis in addition to the classic pathway for testosterone (T) synthesis. In the human ovary, androgen precursors are crucial for estrogen synthesis and hyperandrogenism in pathologies such as the polycystic ovary syndrome is partially due to ovarian overproduction. However, a role for the backdoor pathway is only established for the testis and the adrenal, but not for the human ovary. To investigate whether the backdoor pathway exists in normal and PCOS ovaries, we performed specific gene and protein expression studies on ovarian tissues. We found aldo-keto reductases (AKR1C1-1C4), 5α-reductases (SRD5A1/2) and retinol dehydrogenase (RoDH) expressed in the human ovary, indicating that the ovary might produce dihydrotestosterone via the backdoor pathway. Immunohistochemical studies showed specific localization of these proteins to the theca cells. PCOS ovaries show enhanced expression, what may account for the hyperandrogenism.


Subject(s)
Biosynthetic Pathways/genetics , Dihydrotestosterone/metabolism , Gene Expression Regulation , Ovary/metabolism , Polycystic Ovary Syndrome/genetics , Adolescent , Adrenal Glands/metabolism , Adult , Child , Female , Humans , Male , Middle Aged , Testis/metabolism , Young Adult
17.
Ther Adv Med Oncol ; 8(4): 267-75, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27482286

ABSTRACT

Since androgen signaling plays a pivotal role in the proliferation and metastasis of prostate cancer, androgen deprivation therapy (ADT) or castration therapy is considered the backbone of treatment for newly diagnosed metastatic prostate cancer. However, almost all men experience disease progression on ADT to a state known as metastatic castration-resistant prostate cancer (mCRPC), which continues to be driven by intratumoral androgen synthesis or androgen receptor signaling. Hence, the extragonadal ablation of androgen synthesis from pregnane precursors holds much promise. An inhibitor of cytochrome P450 17α-hydroxy/17,20-lyase (CYP17) enzymes, abiraterone acetate, has already been approved for men with mCRPC. Newer CYP17 inhibitors continue to be developed which are either more selective or have concomitant inhibitory actions on AR signaling. These include VT-464, orteronel, and galeterone. Herein, we focus on the molecular mechanism of action, efficacy, latest evidence, and clinical potential of CYP17 inhibitors in prostate cancer.

18.
J Cell Biochem ; 116(7): 1466-77, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25649163

ABSTRACT

Phthalates are the largest group of environmental pollutants and are considered toxicant to the endocrine system. The present study was aimed to test the effect of in utero exposure of di(2-ethylhexyl)phthalate (DEHP) on Leydig cell steroidogenesis in F1 male offspring's. Pregnant dams were oral gavaged with different doses (1, 10, and 100 mg/kg/day) of DEHP or olive oil during gestational Day 9-21. Serum testosterone (T) and estradiol (E2) levels were significantly reduced in male offspring at 60 days of age. Our results also demonstrate a coordinate, dose-dependent disruption of genes involved in steroidogenesis. The gene expression of StAR, Cyp11a1, 3ß-HSD, 17ß-HSD, 5α-reductase and cytochrome P450 19a1 (or) aromatase (Cyp-19) were significantly decreased. The transcription factors like steroidogenic factor-1 (SF-1) and specific protein-1 (Sp-1) showed a significant decrease in 10 and 100 mg DEHP treatment group. DNA methylation analysis using bisulfite specific-methylation PCR shows hypermethylation in the SF-1 and Sp-1 promoter regions. Further to determine whether the DEHP-induced methylation changes were associated with increased DNA methyltransferase (Dnmt) levels, we measured the expression levels of Dnmt3a, Dnmt3b, Dnmt1, and Dnmt3l using real-time PCR and Western blot method. The mRNA and protein expressions of Dnmt3a, Dnmt3b, and Dnmt1 were stimulated in 10 and 100 mg DEHP treatment groups, whereas no significant change was seen in Dnmt3l expression, suggesting that increased Dnmt3a/b, Dnmt1 may cause DNA hypermethylation in testicular Leydig cells. Overall, these data suggest that gestational exposure to DEHP affects adult testicular function via altered methylation patterns.


Subject(s)
DNA Methylation/drug effects , Diethylhexyl Phthalate/administration & dosage , Environmental Pollutants/administration & dosage , Gene Expression Regulation/drug effects , Leydig Cells/drug effects , Animals , Diethylhexyl Phthalate/toxicity , Dose-Response Relationship, Drug , Environmental Pollutants/toxicity , Estradiol/blood , Female , Gestational Age , Leydig Cells/metabolism , Male , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/pathology , Rats , Rats, Wistar , Testosterone/blood
19.
Endocr Relat Cancer ; 21(4): T67-78, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24829267

ABSTRACT

Prostate cancer is the second leading cause of death in adult males in the USA. Recent advances have revealed that the fatal form of this cancer, known as castration-resistant prostate cancer (CRPC), remains hormonally driven despite castrate levels of circulating androgens. CRPC arises as the tumor undergoes adaptation to low levels of androgens by either synthesizing its own androgens (intratumoral androgens) or altering the androgen receptor (AR). This article reviews the major routes to testosterone and dihydrotestosterone synthesis in CRPC cells and examines the enzyme targets and progress in the development of isoform-specific inhibitors that could block intratumoral androgen biosynthesis. Because redundancy exists in these pathways, it is likely that inhibition of a single pathway will lead to upregulation of another so that drug resistance would be anticipated. Drugs that target multiple pathways or bifunctional agents that block intratumoral androgen biosynthesis and antagonize the AR offer the most promise. Optimal use of enzyme inhibitors or AR antagonists to ensure maximal benefits to CRPC patients will also require application of precision molecular medicine to determine whether a tumor in a particular patient will be responsive to these treatments either alone or in combination.


Subject(s)
Dihydrotestosterone/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Testosterone/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy
20.
J Steroid Biochem Mol Biol ; 143: 19-28, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24565566

ABSTRACT

Castration-resistant prostate cancer (CRPC) remains largely dependent on androgen receptor (AR). Residual tissue androgens are consistently detected within CRPC tumors and play a critical role in facilitating AR-mediated signaling pathways which lead to disease progression. Testosterone and dihydrotestosterone (DHT) are the major androgens detected in tumors. They are produced through three biosynthesis pathways: Δ(4), Δ(5), and backdoor pathways. Both androgens bind to and stimulate AR activation. The current study investigates the effects of pomegranate extracts (POM) and their ability to inhibit androgen biosynthesis using PCa cell lines (22RV1 and LNCaP) in vitro as well as the PTEN knockout mouse model representing prostate cancer. Steroids were extracted using ethyl acetate or solid phase extraction, and then analyzed by UPLC/MS/MS. The results showed that POM (0-12µg/mL) reduced the production of testosterone, DHT, DHEA, androstenedione, androsterone, and pregnenolone in both cell lines. In addition our in vivo data supports this observation with a reduction in serum steroids determined after 20 weeks of POM treatment (0.17 g/L in drinking water). In accordance with these results, Western blotting of cell lysates and tPSA analysis determined that PSA was significantly decreased by the treatment of POM. Interestingly, AKR1C3 and AR levels were shown to be increased in both cell lines, perhaps as a negative feedback effect in response to steroid inhibition. Overall, these results provide mechanistic evidence to support the rationale for recent clinical reports describing efficacy of POM in CRPC patients.


Subject(s)
Androgens/biosynthesis , Lythraceae/chemistry , PTEN Phosphohydrolase/physiology , Plant Extracts/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms/drug therapy , Androstenedione/metabolism , Animals , Blotting, Western , Cell Proliferation/drug effects , Dihydrotestosterone/metabolism , Humans , In Vitro Techniques , Male , Mice , Mice, Knockout , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/metabolism , Testosterone/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL