Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 275
Filter
1.
BMC Pediatr ; 24(1): 451, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010003

ABSTRACT

BACKGROUND: To investigate the relationship between cord blood levels of Angiopoietin-1 (Ang-1) and S-endoglin (sCD105) and bronchopulmonary dysplasia (BPD) in preterm infants. METHODS: Sixty-one preterm infants admitted to the neonatal intensive care unit of the study hospital between July 2021 and September 2022 were included. Cord blood was collected after the birth of premature infants. Ang-1 and sCD105 levels were quantified using the vascular endothelial growth factor enzyme-linked immunosorbent assay. Preterm infants were divided into BPD and non-BPD groups, and differences in Ang-1 and sCD105 levels between the two groups were compared. A binary logistic model was used to assess the association between low and high levels Ang-1 and BPD in preterm infants. RESULTS: In the study, there were 20 preterm infants with BPD (32.8%) and 41 preterm infants with non-BPD (67.2%). Ang-1 concentration levels were lower in the BPD group than in the non-BPD group (7105.43 (5617.01-8523.00) pg/ml vs. 10488.03 (7946.19-15962.77) pg/ml, P = 0.027). However, the sCD105 concentration levels were not significantly different between the BPD and non-BPD groups (P = 0.246). A median Ang-1 concentration of 8800.40 pg/ml was calculated. Logistic regression analysis showed that after adjusting for gestational age, birth weight, and maternal prenatal steroid hormone application, the odds ratio (OR) was 8.577 for the risk of BPD in preterm infants with Ang-1 concentrations of ≤ 8800.40 pg/ml compared to those with Ang-1 concentrations of > 8800.40 pg/ml (OR: 8.577, 95% confidence interval: 1.265-58.155, P = 0.028). CONCLUSION: Our study indicated that Ang-1 levels in the cord blood of preterm infants may be associated the risk of BPD. In the future, we will continue to conduct study with large samples.


Subject(s)
Angiopoietin-1 , Bronchopulmonary Dysplasia , Endoglin , Fetal Blood , Infant, Premature , Humans , Bronchopulmonary Dysplasia/blood , Infant, Newborn , Endoglin/blood , Infant, Premature/blood , Fetal Blood/chemistry , Fetal Blood/metabolism , Female , Male , Angiopoietin-1/blood , Biomarkers/blood , Logistic Models
2.
Fundam Clin Pharmacol ; : e13027, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978462

ABSTRACT

BACKGROUND: Torsion of the spermatic cord is a hazardous and common urologic issue. The current work evaluates the possible protective effect of pregabalin (PGB) and xanthenone (XAN) in testicular ischemia/reperfusion injury induced by testicular torsion/detorsion in rats. MATERIALS AND METHODS: Seven groups of adult male Wistar albino rats were allocated randomly into seven groups, namely, sham control, torsion/detorsion (T/D), PGB 50 mg/kg, PGB 100 mg/kg, XAN 1 mg/kg, XAN 2 mg/kg, and PGB 50 mg/kg plus XAN 1 mg/kg groups. Serum cholesterol and testosterone levels were determined. Also, the levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-қB), angiotensin (Ang) II, Ang-(1-7), and angiotensin-converting enzyme2 (ACE2) were assessed in testicular tissue. Immunohistochemical analysis of heme oxygenase-1 (HO-1) and caspase-3 was performed. Finally, the histopathological examination of the testicular tissues was performed. RESULTS: The PGB 50 mg/kg, PGB 100 mg/kg, XAN 1 mg/kg, XAN 2 mg/kg, and PGB 50 mg/kg plus XAN 1 mg/kg groups showed a significant decrease in serum cholesterol, MDA, NO, TNF-α, NF-қB, and Ang-II levels coupled with a significant increase in both testosterone and ACE2 expression. Furthermore, all test groups showed a significant improvement in the histopathological picture with a reduction in caspase-3 and an increase in HO-1 immunoexpression in testicular tissue. CONCLUSION: PGB and XAN may have promising effects on preventing testicular T/D injury through antioxidant, anti-inflammatory, and antiapoptotic actions.

3.
Phytother Res ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886264

ABSTRACT

Atherosclerosis represents the major cause of mortality worldwide and triggers higher risk of acute cardiovascular events. Pericytes-endothelial cells (ECs) communication is orchestrated by ligand-receptor interaction generating a microenvironment which results in intraplaque neovascularization, that is closely associated with atherosclerotic plaque instability. Notoginsenoside R1 (R1) exhibits anti-atherosclerotic bioactivity, but its effect on angiogenesis in atherosclerotic plaque remains elusive. The aim of our study is to explore the therapeutic effect of R1 on vulnerable plaque and investigate its potential mechanism against intraplaque neovascularization. The impacts of R1 on plaque stability and intraplaque neovascularization were assessed in ApoE-/- mice induced by high-fat diet. Pericytes-ECs direct or non-direct contact co-cultured with VEGF-A stimulation were used as the in vitro angiogenesis models. Overexpressing Ang1 in pericytes was performed to investigate the underlying mechanism. In vivo experiments, R1 treatment reversed atherosclerotic plaque vulnerability and decreased the presence of neovessels in ApoE-/- mice. Additionally, R1 reduced the expression of Ang1 in pericytes. In vitro experiments demonstrated that R1 suppressed pro-angiogenic behavior of ECs induced by pericytes cultured with VEGF-A. Mechanistic studies revealed that the anti-angiogenic effect of R1 was dependent on the inhibition of Ang1 and Tie2 expression, as the effects were partially reversed after Ang1 overexpressing in pericytes. Our study demonstrated that R1 treatment inhibited intraplaque neovascularization by governing pericyte-EC association via suppressing Ang1-Tie2/PI3K-AKT paracrine signaling pathway. R1 represents a novel therapeutic strategy for atherosclerotic vulnerable plaques in clinical application.

4.
Curr Issues Mol Biol ; 46(5): 3975-3989, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38785513

ABSTRACT

This study aimed to explore the correlation between Angiopoietin-1 (Ang-1) and Angiopoietin-2 (Ang-2) concentrations and the Angiopoietin-2/Angiopoietin-1 ratio (Ang-2/Ang-1) with clinical outcomes, potentially serving as disease severity and survival biomarkers. A study at AHEPA University Hospital involved 90 Coronavirus Disease 2019 (COVID-19) adult patients, 30 hospitalized intensive care units (ICU), 30 inward units (non-ICU), and 30 asymptomatic non-hospitalized individuals as controls. Estimated endothelial dysfunction markers related to angiogenesis were measured. There was a statistically significant difference only between outpatient and hospitalized patients (non-ICU-ICU groups) for the Ang-1 and Ang-2 indices. The Ang-2/Ang-1 ratio has differed significantly among the individual patient groups. An ROC analysis was conducted to find an optimal threshold for distinguishing between (outpatients-non-ICU) and (non-ICU-ICU) groups. It was based on Youden's index of 0.1122 and 0.3825, respectively. The Ang-1, Ang-2 levels, and Ang-2/Ang-1 ratio were analyzed as severity indicators in COVID-19 patients. The Ang-2/Ang-1 ratio demonstrated better prognostic and diagnostic utility than individual biomarker levels. Monitoring the Ang-2/Ang-1 ratio can identify COVID-19 patients at risk and assist clinicians in tailoring treatment strategies to improve outcomes.

5.
Biomedicines ; 12(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38790911

ABSTRACT

Angiopoietins are crucial growth factors for maintaining a healthy, functional endothelium. Patients with type 2 diabetes (T2D) exhibit significant levels of angiogenic markers, particularly Angiopoietin-2, which compromises endothelial integrity and is connected to symptoms of endothelial injury and failure. This report examines the levels of circulating angiopoietins in people with T2D and diabetic nephropathy (DN) and explores its link with ANGPTL proteins. We quantified circulating ANGPTL3, ANGPTL4, ANGPTL8, Ang1, and Ang2 in the fasting plasma of 117 Kuwaiti participants, of which 50 had T2D and 67 participants had DN. The Ang2 levels increased with DN (4.34 ± 0.32 ng/mL) compared with T2D (3.42 ± 0.29 ng/mL). This increase correlated with clinical parameters including the albumin-to-creatinine ratio (ACR) (r = 0.244, p = 0.047), eGFR (r = -0.282, p = 0.021), and SBP (r = -0.28, p = 0.024). Furthermore, Ang2 correlated positively to both ANGPTL4 (r = 0.541, p < 0.001) and ANGPTL8 (r = 0.41, p = 0.001). Multiple regression analysis presented elevated ANGPTL8 and ACRs as predictors for Ang2's increase in people with DN. In people with T2D, ANGPTL4 positively predicted an Ang2 increase. The area under the curve (AUC) in receiver operating characteristic (ROC) analysis of the combination of Ang2 and ANGPTL8 was 0.77 with 80.7% specificity. In conclusion, significantly elevated Ang2 in people with DN correlated with clinical markers such as the ACR, eGFR, and SBP, ANGPTL4, and ANGPTL8 levels. Collectively, this study highlights a close association between Ang2 and ANGPTL8 in a population with DN, suggesting them as DN risk predictors.

6.
Biochem Pharmacol ; 224: 116261, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705534

ABSTRACT

Delayed neurocognitive recovery (dNCR) is a common complication in geriatric surgical patients. The impact of anesthesia and surgery on patients with neurodegenerative diseases, such as Parkinson's disease (PD) or prion disease, has not yet been reported. In this study, we aimed to determine the association between a pre-existing A53T genetic background, which involves a PD-related point mutation, and the development of postoperative dNCR. We observed that partial hepatectomy induced hippocampus-dependent cognitive deficits in 5-month-old A53T transgenic mice, a model of early-stage PD without cognitive deficits, unlike in age-matched wild-type (WT) mice. We respectively examined molecular changes at 6 h, 1 day, and 2 days after partial hepatectomy and observed that cognitive changes were accompanied by weakened angiotensin-(1-7)/Mas receptor [Ang-(1-7)/MasR] axis, increased alpha-synuclein (α-syn) expression and phosphorylation, decreased methylated protein phosphatase-2A (Me-PP2A), and prompted microglia M1 polarization and neuronal apoptosis in the hippocampus at 1 day after surgery. Nevertheless, no changes in blood-brain barrier (BBB) integrity or plasma α-syn levels in either A53T or WT mice. Furthermore, intranasal administration of selective MasR agonist AVE 0991, reversed the mentioned cognitive deficits in A53T mice, enhanced MasR expression, reduced α-syn accumulation and phosphorylation, and attenuated microglia activation and apoptotic response. Our findings suggest that individuals with the A53T genetic background may be more susceptible to developing postoperative dNCR. This susceptibility could be linked to central α-syn accumulation mediated by the weakened Ang-(1-7)/MasR/methyl-PP2A signaling pathway in the hippocampus following surgery, independent of plasma α-syn level and BBB.


Subject(s)
Angiotensin I , Hippocampus , Mice, Transgenic , Peptide Fragments , Receptors, G-Protein-Coupled , alpha-Synuclein , Animals , Humans , Male , Mice , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Angiotensin I/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Mice, Inbred C57BL , Mutation , Peptide Fragments/metabolism , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/genetics , Postoperative Complications/metabolism , Postoperative Complications/genetics , Proto-Oncogene Mas , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics
7.
Transl Neurosci ; 15(1): 20220334, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38623573

ABSTRACT

Background: Death among resuscitated patients is mainly caused by brain injury after cardiac arrest/cardiopulmonary resuscitation (CA/CPR). The angiotensin converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas receptor (MasR) axis has beneficial effects on brain injury. Therefore, we examined the roles of the ACE2/Ang-(1-7)/MasR axis in brain injury after CA/CPR. Method: We used a total of 76 male New Zealand rabbits, among which 10 rabbits underwent sham operation and 66 rabbits received CA/CPR. Neurological functions were determined by assessing serum levels of neuron-specific enolase and S100 calcium-binding protein B and neurological deficit scores. Brain water content was estimated. Neuronal apoptosis in the hippocampus was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling assays. The expression levels of various genes were measured by enzyme-linked immunosorbent assay and western blotting. Results: Ang-(1-7) (MasR activator) alleviated CA/CPR-induced neurological deficits, brain edema, and neuronal damage, and A779 (MasR antagonist) had the opposite functions. The stimulation of ACE2/Ang-(1-7)/MasR inactivated the ACE/Ang II/AT1R axis and activated PI3K/Akt signaling. Inhibiting PI3K/Akt signaling inhibited Ang-(1-7)-mediated protection against brain damage after CA/CPR. Conclusion: Collectively, the ACE2/Ang-(1-7)/MasR axis alleviates CA/CPR-induced brain injury through attenuating hippocampal neuronal apoptosis by activating PI3K/Akt signaling.

8.
Mol Cell Biochem ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652215

ABSTRACT

Angiopoietin-1 (Ang-1) and Vascular Endothelial Growth Factor (VEGF) are central regulators of angiogenesis and are often inactivated in various cardiovascular diseases. VEGF forms complexes with ETS transcription factor family and exerts its action by downregulating multiple genes. Among the target genes of the VEGF-ETS complex, there are a significant number encoding key angiogenic regulators. Phosphorylation of the VEGF-ETS complex releases transcriptional repression on these angiogenic regulators, thereby promoting their expression. Ang-1 interacts with TEK, and this phosphorylation release can be modulated by the Ang-1-TEK signaling pathway. The Ang-1-TEK pathway participates in the transcriptional activation of VEGF genes. In summary, these elements constitute the Ang-1-TEK-VEGF signaling pathway. Additionally, Ang-1 is activated under hypoxic and inflammatory conditions, leading to an upregulation in the expression of TEK. Elevated TEK levels result in the formation of the VEGF-ETS complex, which, in turn, downregulates the expression of numerous angiogenic genes. Hence, the Ang-1-dependent transcriptional repression is indirect. Reduced expression of many target genes can lead to aberrant angiogenesis. A significant overlap exists between the target genes regulated by Ang-1-TEK-VEGF and those under the control of the Ang-1-TEK-TSP-1 signaling pathway. Mechanistically, this can be explained by the replacement of the VEGF-ETS complex with the TSP-1 transcriptional repression complex at the ETS sites on target gene promoters. Furthermore, VEGF possesses non-classical functions unrelated to ETS and DNA binding. Its supportive role in TSP-1 formation may be exerted through the VEGF-CRL5-VHL-HIF-1α-VH032-TGF-ß-TSP-1 axis. This review assesses the regulatory mechanisms of the Ang-1-TEK-VEGF signaling pathway and explores its significant overlap with the Ang-1-TEK-TSP-1 signaling pathway.

9.
Inflamm Res ; 73(6): 1019-1031, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38656426

ABSTRACT

OBJECTIVE: Angiotensin-(1-7) [Ang-(1-7)] is a pro-resolving mediator. It is not known whether the pro-resolving effects of Ang-(1-7) are sustained and protect the lung from a subsequent inflammatory challenge. This study sought to investigate the impact of treatment in face of a second allergic or lipopolysaccharide (LPS) challenge. METHODS: Mice, sensitized and challenged with ovalbumin (OVA), received a single Ang-(1-7) dose at the peak of eosinophilic inflammation, 24 h after the final OVA challenge. Subsequently, mice were euthanized at 48, 72, 96, and 120 h following the OVA challenge, and cellular infiltrate, inflammatory mediators, lung histopathology, and macrophage-mediated efferocytic activity were evaluated. The secondary inflammatory stimulus (OVA or LPS) was administered 120 h after the last OVA challenge, and subsequent inflammatory analyses were performed. RESULTS: Treatment with Ang-(1-7) resulted in elevated levels of IL-10, CD4+Foxp3+, Mres in the lungs and enhanced macrophage-mediated efferocytic capacity. Moreover, in allergic mice treated with Ang-(1-7) and then subjected to a secondary OVA challenge, inflammation was also reduced. Similarly, in mice exposed to LPS, Ang-(1-7) effectively prevented the lung inflammation. CONCLUSION: A single dose of Ang-(1-7) resolves lung inflammation and protect the lung from a subsequent inflammatory challenge highlighting its potential therapeutic for individuals with asthma.


Subject(s)
Angiotensin I , Lipopolysaccharides , Lung , Ovalbumin , Peptide Fragments , Animals , Angiotensin I/therapeutic use , Angiotensin I/pharmacology , Angiotensin I/administration & dosage , Peptide Fragments/pharmacology , Peptide Fragments/therapeutic use , Peptide Fragments/administration & dosage , Lung/drug effects , Lung/pathology , Lung/immunology , Ovalbumin/immunology , Mice , Male , Macrophages/drug effects , Macrophages/immunology , Eosinophils/drug effects , Eosinophils/immunology , Mice, Inbred BALB C , Inflammation/drug therapy , Eosinophilia/drug therapy , Eosinophilia/immunology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology
10.
Microorganisms ; 12(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38543635

ABSTRACT

The RAS is a hormonal system playing a pivotal role in the control of blood pressure and electrolyte homeostasis, the alteration of which is associated with different pathologies, including acute respiratory distress syndrome (ARDS). As such, it is not surprising that a number of studies have attempted to elucidate the role and balance of the renin-angiotensin system (RAS) in COVID-19. In this review article, we will describe the evidence collected regarding the two main enzymes of the RAS (i.e., ACE and ACE2) and their principal molecular products (i.e., AngII and Ang1-7) in SARS-CoV-2 infection, with the overarching goal of drawing conclusions on their possible role as clinical markers in association with disease severity, progression, and outcome. Moreover, we will bring into the picture new experimental data regarding the systemic activity of ACE and ACE2 as well as the concentration of AngII and Ang1-7 in a cohort of 47 COVID-19 patients hospitalized at the IRCCS Sacro Cuore-Don Calabria Hospital (Negrar, Italy) between March and April 2020. Finally, we will discuss the possibility of considering this systemic pathway as a clinical marker for COVID-19.

11.
Heliyon ; 10(5): e27267, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486752

ABSTRACT

Large bone defects after trauma demand for adequate bone substitutes. Bone void fillers should be antibacterial and pro-angiogenic. One viable option is the use of composite materials like the combination of PLGA and amorphous calcium phosphate (aCaP). Copper stimulates angiogenesis and has antibacterial qualities. Either copper oxide (CuO) nanoparticles (NPs) were therefore added to PLGA/aCaP/CuO in different concentrations (1, 5 and 10 w/w %) or copper-doped tricalcium phosphate NPs (TCP with 2% of copper) were electrospun into PLGA/CuTCP nanocomposites. Bi-layered nanocomposites of PLGA/aCaP with different copper NPs (CuO or TCP) and a second layer of pristine PLGA were fabricated. Two clinical bacterial isolates (Staphylococcus aureus and Staphylococcus epidermidis) were used to assess antibacterial properties of the copper-containing materials. For angiogenesis, the chorioallantoic membrane (CAM) assay of the chicken embryo was performed. The higher the CuO content, the higher were the antibacterial properties, with 10 % CuO reducing bacterial adhesion most effectively. Vessel and cell densities were highest in the 5 % CuO containing scaffolds, while tissue integration was more pronounced at lower CuO content. The PLGA/aCaP/CuO (1 % CuO) behaved similar like PLGA/CuTCP in all angiogenic and antibacterial readouts, based on the same copper fraction. We conclude that CuO NPs or CuTCP NPs are useful components to increase angiogenic properties of nanocomposites and at the same time exhibiting antibacterial characteristics.

12.
Mol Nutr Food Res ; 68(5): e2300524, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38356052

ABSTRACT

SCOPE: This study aims to investigate the antihypertensive effect of four chicken muscle-derived angiotensin (Ang)-converting enzymes (ACE)-regulating peptides: Val-Arg-Pro (VRP, ACE inhibition), Leu-Lys-Tyr and Val-Arg-Tyr (LKY and VRY, ACE inhibition and ACE2 upregulation), and Val-Val-His-Pro-Lys-Glu-Ser-Phe (VVHPKESF [V-F], ACE2 upregulation) in spontaneously hypertensive rats. METHODS AND RESULTS: Rats (12-14 weeks old) are grouped: 1) untreated, 2) VRP, 3) LKY, 4) VRY, and 5) V-F. Blood pressure (BP) is monitored using implantable telemetry technology. Over 18-day oral administration of 15 mg kg-1 body weight (BW) per day, only peptide V-F significantly (p < 0.05) reduces BP, decreases circulating Ang II, and increases ACE2 and Ang (1-7) levels, and enhances aortic expressions of ACE2 and Mas receptor (MasR). Peptide V-F also attenuates vascular inflammation (TNFα, MCP-1, IL-1α, IL-15, and cyclooxygenase 2 [COX2]) and vascular oxidative stress (nitrotyrosine). The gastrointestinal (GI)-degraded fragment of peptide V-F, Val-Val-His-Pro-Lys (VVHPK), is also an ACE2-upregulating peptide. Peptides VRP, LKY, and VRY do not reduce BP, possibly due to low bioavailability or other unknown reasons. CONCLUSIONS: Peptide V-F is the first ACE2-upregulating peptide, purified and fractionated from food proteins based on in vitro ACE2 upregulation, that reduces BP associated with the activation of ACE2/Ang (1-7)/MasR axis; the N-terminal moiety VVHPK may be responsible for the antihypertensive effect of V-F.


Subject(s)
Angiotensin-Converting Enzyme 2 , Chickens , Rats , Animals , Rats, Inbred SHR , Blood Pressure , Angiotensin-Converting Enzyme 2/pharmacology , Chickens/metabolism , Antihypertensive Agents/pharmacology , Peptides/pharmacology , Peptide Fragments/pharmacology , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/metabolism , Angiotensin II/pharmacology , Muscles/metabolism
13.
Brain Inj ; 38(3): 194-201, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38297513

ABSTRACT

AIM: To explore the potential role of microRNA miR-221-5p on the angiopoietin-1 (Ang-1)/Ang-2/Tie-2 signaling axis after subarachnoid hemorrhage (SAH) in a rat model. METHODS: Aspects of the rat's behavior were measured using the Kaoutzanis scoring system to test neurological responses. This included feeding behavior, body contraction, motor, and eye-opening responses. Brain sections were studied using transmission electron microscopy and Evans blue extravasation. Levels of Ang-1, Ang-2, and Tie-2 were determined by Western blot, while miR-221-5p was quantified using stem-loop real-time quantitative PCR (RT-qPCR). RESULTS: The SAH group responded worse to the neurological response test than the sham-operated group. The intercellular space was widened in the SAH group, but not in the sham-operated group. Evans blue dye leaked significantly more into brain tissue cells of the SAH group. Stem-loop qRT-PCR showed elevated miR-221-5p levels. Additionally, Ang-1 and Tie-2 were reduced but Ang-2 expression was increased after SAH. This led to a significant reduction of the Ang-1/Ang-2 ratio in the brain tissue, which was associated with the destruction of the blood-brain barrier. CONCLUSION: The data indicate that miR-221-5p might regulate blood-brain barrier dysfunction through the Ang-1/Ang-2/Tie-2 signaling axis, suggesting that it should be further investigated as a potential novel biomarker.


Subject(s)
MicroRNAs , Subarachnoid Hemorrhage , Rats , Animals , Blood-Brain Barrier , Angiopoietin-1/genetics , Angiopoietin-1/metabolism , Evans Blue/metabolism , MicroRNAs/metabolism
14.
Int Immunopharmacol ; 128: 111535, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38246001

ABSTRACT

Endothelial cell (EC) barrier dysfunction and increased adhesion of immune inflammatory cells to ECs crucially contribute to acute lung injury (ALI). Angiotensin-converting enzyme 2 (ACE2) is an essential regulator of the renin-angiotensin system (RAS) and exerts characteristic vasodilatory and anti-inflammatory effects. SARS-COV-2 infects the lungs by binding to ACE2, which can lead to dysregulation of ACE2 expression, further leading to ALI with predominantly vascular inflammation and eventually to more severe acute respiratory distress syndrome (ARDS). Therefore, restoration of ACE2 expression represents a valuable therapeutic approach for SARS-COV-2-related ALI/ARDS. In this study, we used polyinosinic-polycytidylic acid (Poly(I:C)), a double-stranded RNA analog, to construct a mouse ALI model that mimics virus infection. After Poly(I:C) exposure, ACE2 was downregulated in mouse lung tissues and in cultured ECs. Treatment with DIZE, an ACE2-activating compound, upregulated ACE2 expression and relieved ALI in mice. DIZE also improved barrier function and reduced the number of THP-1 monocytes adhering to cultured ECs. Focal adhesion kinase (FAK) and phosphorylated FAK (p-FAK) levels were increased in lung tissues of ALI mice as well as in Poly(I:C)-treated ECs in vitro. Both DIZE and the FAK inhibitor PF562271 decreased FAK/p-FAK expression in both ALI models, attenuating ALI severity in vivo and increasing barrier function and reducing monocyte adhesion in cultured ECs. Furthermore, in vivo experiments using ANG 1-7 and the MAS inhibitor A779 corroborated that DIZE-mediated ACE2 activation stimulated the activity of the ANG 1-7/MAS axis, which inhibited FAK/p-FAK expression in the mouse lung. These findings provide further evidence that activation of ACE2 in ECs may be a valuable therapeutic strategy for ALI.


Subject(s)
Acute Lung Injury , Indoles , Pyridines , Respiratory Distress Syndrome , Sulfonamides , Animals , Mice , Acute Lung Injury/drug therapy , Angiotensin-Converting Enzyme 2/metabolism , Endothelial Cells/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/therapeutic use , Lung/metabolism , Peptidyl-Dipeptidase A/metabolism , Respiratory Distress Syndrome/metabolism
15.
J Inflamm Res ; 17: 469-485, 2024.
Article in English | MEDLINE | ID: mdl-38282712

ABSTRACT

Purpose: Inflammation triggers a metabolic shift in macrophages from oxidative phosphorylation to glycolysis, a phenomenon known as the Warburg effect. This metabolic reprogramming worsens inflammation and cascades into organ damage. Angiotensin-(1-7) [Ang-(1-7)], a small molecule, has demonstrated anti-inflammatory properties. This study investigates whether Ang-(1-7) mitigates inflammation in LPS-induced macrophages and septic mice by regulating the Warburg effect in immune metabolism. Methods: The study induced macrophages with LPS in vitro and measured inflammatory factors using ELISA and Western blot. Key enzymes in glycolysis, mitochondrial respiratory complexes, and citrate pathway key molecules were assessed using Western blot and qRT-PCR. Mitochondrial membrane potential (MMP), lactate, and ATP were measured using assay kits. In vivo, a mouse model of sepsis induced by LPS was used. Kidney tissues were examined for pathological and mitochondrial ultrastructural alterations. The levels of inflammatory factors in mouse serum, glycolysis and citrate pathway-related molecules in the kidney were assessed using qRT-PCR, Western blot, and immunofluorescence techniques. Additionally, MMP, lactate, and ATP in the kidney were measured using assay kits. Results: In vitro experiments demonstrated that Ang-(1-7) inhibited the levels of inflammatory factors in LPS-treated RAW264.7 cells. It also reduced the expression of key glycolytic enzymes HK2, PFKFB3, and PKM2, as well as lactate levels. Additionally, it decreased intracellular citrate accumulation, enhanced mitochondrial respiratory complexes I and III, and ATP levels. Ang-(1-7) alleviated MMP damage, modulated citrate pathway-related molecules, including SLC25A1, ACLY, and HIF-1α. In vivo experiments showed that Ang-(1-7) lowered glycolysis levels in septic mice, improved mitochondrial ultrastructure and function, mitigated inflammation and renal tissues damage in septic mice, and suppressed the expression of key molecules in the citrate pathway. Conclusion: In conclusion, Ang-(1-7) can regulate the Warburg effect through the citrate pathway, thereby alleviating inflammation in LPS-induced macrophages and septic mice.

16.
Int Immunopharmacol ; 128: 111522, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38246004

ABSTRACT

This study investigated the effects of calcitriol on polyinosinic-polycytidylic acid (poly(I:C))-induced acute lung injury (ALI) and its association with Toll-like receptor 3 (TLR3) and renin-angiotensin system (RAS) signal pathways in obese mice. Normal mice were fed a high-fat diet to induce obesity. Obese mice were divided into four groups: SS group, intratracheally instilled with saline and intravenous (IV) saline injection via tail vein; SD group, instilled with saline and IV calcitriol injection; PS group, instilled with poly(I:C) and IV saline injection; and PD group, instilled with poly(I:C) and IV calcitriol injection. All mice were sacrificed 12 or 24 h after poly(I:C) stimulation. The results showed that poly(I:C) instillation led to increased production of systemic inflammatory cytokines. In the lungs, the population of macrophages decreased, while more neutrophils were recruited. TLR3-associated genes including IRF3, nuclear factor-κB, interferon-ß and phosphorylated IRF3 expression levels, were upregulated. The RAS-associated AT1R and ACE2 protein levels increased, whereas AT2R, Ang(1-7), and MasR levels decreased. Also, reduced tight junction (TJ) proteins and elevated lipid peroxide levels were observed 24 h after poly(I:C) stimulation. Compared to the PS group, the PD group exhibited reduced systemic and lung inflammatory cytokine levels, increased macrophage while decreased neutrophil percentages, downregulated TLR3-associated genes and phosphorylated IRF3, and polarized toward the RAS-AT2R/Ang(1-7)/MasR pathway in the lungs. Higher lung TJ levels and lower injury scores were also noted. These findings suggest that calcitriol treatment after poly(I:C) instillation alleviated ALI in obese mice possibly by downregulating TLR3 expression and tending toward the RAS-associated anti-inflammatory pathway.


Subject(s)
Acute Lung Injury , Renin-Angiotensin System , Mice , Animals , Toll-Like Receptor 3/metabolism , Calcitriol , Mice, Obese , Poly I-C/metabolism , Signal Transduction , Acute Lung Injury/metabolism , Cytokines/metabolism
17.
Eur J Pharmacol ; 962: 176233, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38043775

ABSTRACT

Pulmonary fibrosis (PF) is a chronic, progressive interstitial lung disease characterized by diffuse alveolar inflammation, fibroblast differentiation, and the excessive deposition of extracellular matrix. During the progression of PF, redox imbalance caused by excessive reactive oxygen species (ROS) production can result in further destruction of lung tissue. At present, data on the role of NADPH oxidase-4 (Nox4)-nuclear factor erythroid 2-related factor 2 (Nrf2) redox imbalance in PF are limited. The angiotensin (1-7) [Ang-(1-7)]/Mas axis is a protective axis in the renin-angiotensin system (RAS) that exerts antifibrotic effects. Therefore, this study aimed to investigate the role of the Ang-(1-7)/Mas axis in PF and to explore its mechanism in depth. The results revealed that the Ang-(1-7)/Mas axis inhibited TGF-ß1-induced lung fibroblast differentiation, inflammation and fibrosis in bleomycin (BLM)-treated lung tissue. A mechanistic study suggested that the Ang-(1-7)/Mas axis may restore Nox4-Nrf2 redox homeostasis by upregulating the level of p62, reducing oxidative stress and the inflammatory response and thus delaying the progression of lung fibrosis. This study provides a theoretical basis for exploring the mechanisms of PF and therapeutic targets for PF.


Subject(s)
Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , NF-E2-Related Factor 2/metabolism , Bleomycin/adverse effects , Peptidyl-Dipeptidase A/metabolism , Lung , Inflammation , Oxidation-Reduction , Homeostasis , NADPH Oxidase 4
18.
Med Res Rev ; 44(2): 587-605, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37947345

ABSTRACT

The renin-angiotensin system (RAS) has been widely known as a circulating endocrine system involved in the control of blood pressure. However, components of RAS have been found to be localized in rather unexpected sites in the body including the kidneys, brain, bone marrow, immune cells, and reproductive system. These discoveries have led to steady, growing evidence of the existence of independent tissue RAS specific to several parts of the body. It is important to understand how RAS regulates these systems for a variety of reasons: It gives a better overall picture of human physiology, helps to understand and mitigate the unintended consequences of RAS-inhibiting or activating drugs, and sets the stage for potential new therapies for a variety of ailments. This review fulfills the need for an updated overview of knowledge about local tissue RAS in several bodily systems, including their components, functions, and medical implications.


Subject(s)
Kidney , Renin-Angiotensin System , Humans , Renin-Angiotensin System/physiology , Kidney/metabolism , Angiotensin II/metabolism , Peptidyl-Dipeptidase A/metabolism
19.
J Exp Biol ; 227(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38149682

ABSTRACT

Elevation in water salinity can threaten the spermatogenesis and fertility of freshwater animals. The role of the renin-angiotensin system (RAS) in regulating spermatogenesis has attracted considerable attention. Our previous study found that red-eared sliders (Trachemys scripta elegans), could survive in 10 PSU water for over 1 year. To understand the chronic impact of salinity on testicular spermatogenesis and underlying mechanisms, male T. s. elegans were subjected to treatment with water of 5 PSU and 10 PSU for a year, and spermatogenesis and regulation of the RAS signal pathway was assessed. Results showed induced inflammation in the testes of T. s. elegans in the 10 PSU group, as evidenced by a decrease in the number of testicular germ cells from 1586 to 943. Compared with the control group, the levels of proinflammatory genes, including TNF-α, IL-12A and IL-6 were elevated 3.1, 0.3, and 1.4 times, respectively, in animals exposed to 10 PSU water. Testicular antiapoptotic processes of T. s. elegans might involve the vasoactive peptide angiotensin-(1-7) in the RAS, as its level was significantly increased from 220.2 ng ml-1 in controls to 419.2 ng ml-1 in the 10 PSU group. As expected, specific inhibitor (A-779) for the Ang-(1-7) acceptor effectively prevented the salinity-induced upregulation of genes encoding anti-inflammatory and antiapoptotic factors (TGF-ß1, Bcl-6) in the testis of the 10 PSU animals, whereas it promoted the upregulation of proinflammatory and proapoptotic factors (TNF-α, IL-12A, IL-6, Bax and caspase-3). Our data indicated that Ang-(1-7) attenuates the effect of salinity on inflammation and apoptosis of the testis in T. s. elegans. A new perspective to prevent salinity-induced testis dysfunction is provided.


Subject(s)
Angiotensin I , Peptide Fragments , Tumor Necrosis Factor-alpha , Turtles , Animals , Male , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6 , Salt Stress , Turtles/metabolism , Inflammation , Spermatogenesis , Water/metabolism
20.
J Clin Med ; 12(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37959338

ABSTRACT

In the last two decades, the study of the renin-angiotensin-aldosterone system (RAAS) has revealed a counterregulatory protective axis. This protective arm is characterized by ACE2/Ang 1-7/MasR and Ang 1-9 that largely counteracts the classic arm of the RAAS mediated by ACE/Ang II/AT1R/aldosterone and plays an important role in the prevention of inflammation, oxidative stress, hypertension, and cardiovascular remodeling. A growing body of evidence suggests that enhancement of this counterregulatory arm of RAAS represents an important therapeutic approach to facing cardiovascular comorbidities. In this review, we provide an overview of the beneficial effects of ACE2, Ang 1-7/MasR, and Ang 1-9 in the context of oxidative stress, vascular dysfunction, and organ damage.

SELECTION OF CITATIONS
SEARCH DETAIL