Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 690
Filter
1.
Virulence ; : 2411543, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39359062

ABSTRACT

Candida krusei, also known as Pichia kudriavzevii, is an emerging non-albicans Candida (NAC) species causing both superficial and deep-seated infections in humans. This fungal pathogen is inherently resistant to the first-line antifungal drug, fluconazole, and is widely distributed in natural environments such as soil, foods, vegetables, and fruits. In this study, we collected 86 C. krusei strains from clinical settings and traditional fermented vegetables from different areas of China. Compared to C. krusei strains from fermented vegetables, clinical isolates exhibited a higher ability to undergo filamentation and biofilm development, which could facilitate its host colonization and infections. Isolates from fermented vegetables showed higher resistance to several antifungal drugs including fluconazole, voriconazole, itraconazole, amphotericin B, and caspofungin, than clinical strains, while they were more susceptible to posaconazole than clinical strains. Although C. krusei has been thought to be a diploid organism, we found that one-fourth of clinical strains and the majority of isolates from fermented vegetables (87.5%) are triploid. Whole-genome sequencing and population genetic analyses demonstrated that isolates from clinical settings and fermented food are genetically associated, and distributed across a wide range of genetic clusters. Additionally, we found that six nucleotide substitutions at the promoter region of the ABC11 gene, encoding a multidrug efflux pump, could play a critical role in antifungal resistance in this species. Given the ubiquitous distribution of C. krusei strains in fermented vegetables and their genetic association with clinical strains, a One Health approach will be necessary to control the prevalence of this pathogen.

2.
Sci Rep ; 14(1): 22491, 2024 09 28.
Article in English | MEDLINE | ID: mdl-39341972

ABSTRACT

Reptiles in the wild or as pets may act as spreaders of bacteria, viruses, fungi and parasites. However, studies on the mycobiota of these animals are scanty. This study investigates the occurrence of yeasts from the cloacal swabs of snakes of different origins and the antifungal profile of the isolated strains. A total of 180 cloacal samples of snakes were collected from Morocco (Group I: n = 68) and Italy (Group II: n = 112). Yeast species were biochemically and molecularly identified. A total of 72 yeast strains belonging to 13 genera, 8 from snakes in Group I and five from snakes in Group II were identified. The most frequently isolated species were Trichosporon asahii (22.2%) and Candida tropicalis (15.3%) from snakes in Group I and Debaryomyces spp. (16.7%) and Metahyphopichia silvanorum (11.1%) from snakes in Group II. Multiple azole and amphotericin B (AmB) resistance phenomena were detected among isolated yeasts. Azole multi drug resistance phenomena were detected among yeasts from Group I and Rhodotorula mucilaginosa from Group II, whereas AmB resistance phenomena among those from Group II. Data suggest that snakes may harbor pathogenetic yeasts, being potential reservoirs and spreaders of these organisms in the environment. Since the yeast species community from different groups of animals as well as their antifungal profile reflects the epidemiology of human yeast infections in the same geographical areas, the results indicate that snakes may be considered as sentinels for human/animal pathogenic microorganisms and bio-indicators of environmental quality.


Subject(s)
Snakes , Yeasts , Animals , Snakes/microbiology , Yeasts/isolation & purification , Yeasts/classification , Zoonoses/microbiology , Antifungal Agents/pharmacology , Italy , Morocco , Humans , Cloaca/microbiology , Drug Resistance, Fungal , Sentinel Species , Microbial Sensitivity Tests
3.
Front Fungal Biol ; 5: 1451455, 2024.
Article in English | MEDLINE | ID: mdl-39323611

ABSTRACT

Fungi are ubiquitous in the environment and play a key role in the decomposition and recycling of nutrients. On the one hand, their special properties are a great asset for the agricultural and industrial sector, as they are used as source of nutrients, producers of enzymes, pigments, flavorings, and biocontrol agents, and in food processing, bio-remediation and plant growth promotion. On the other hand, they pose a serious challenge to our lives and the environment, as they are responsible for fungal infections in plants, animals and humans. Although host immunity opposes invading pathogens, certain factors favor the manifestation of fungal diseases. The prevalence of fungal infections is on the rise, and there is an alarming increase in the resistance of fungal pathogens to approved drugs. The limited number of antimycotics, the obstacles encountered in the development of new drugs due to the poor tolerability of antifungal agents in patients, the limited number of unique antifungal targets, and the low species specificity contribute to the gradual depletion of the antifungal pipeline and newly discovered antifungal drugs are rare. Promising candidates as next-generation therapeutics are antimicrobial proteins and peptides (AMPs) produced by numerous prokaryotic and eukaryotic organisms belonging to all kingdom classes. Importantly, filamentous fungi from the order Eurotiales have been shown to be a rich source of AMPs with specific antifungal activity. A growing number of published studies reflects the efforts made in the search for new antifungal proteins and peptides (AFPs), their efficacy, species specificity and applicability. In this review, we discuss important aspects related to fungi, their impact on our life and issues involved in treating fungal infections in plants, animals and humans. We specifically highlight the potential of AFPs from Eurotiales as promising alternative antifungal therapeutics. This article provides insight into the structural features, mode of action, and progress made toward their potential application in a clinical and agricultural setting. It also identifies the challenges that must be overcome in order to develop AFPs into therapeutics.

4.
Curr Genomics ; 25(5): 323-333, 2024.
Article in English | MEDLINE | ID: mdl-39323620

ABSTRACT

Fungal infections are considered a great threat to human life and are associated with high mortality and morbidity, especially in immunocompromised individuals. Fungal pathogens employ various defense mechanisms to evade the host immune system, which causes severe infections. The available repertoire of drugs for the treatment of fungal infections includes azoles, allylamines, polyenes, echinocandins, and antimetabolites. However, the development of multidrug and pandrug resistance to available antimycotic drugs increases the need to develop better treatment approaches. In this new era of -omics, bioinformatics has expanded options for treating fungal infections. This review emphasizes how bioinformatics complements the emerging strategies, including advancements in drug delivery systems, combination therapies, drug repurposing, epitope-based vaccine design, RNA-based therapeutics, and the role of gut-microbiome interactions to combat anti-fungal resistance. In particular, we focused on computational methods that can be useful to obtain potent hits, and that too in a short period.

5.
J Vet Res ; 68(3): 389-394, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39324026

ABSTRACT

Introduction: Microsporum canis is a dermatophyte that mainly affects dogs and cats. However, it can be transmitted to humans by direct contact. This makes it one of the most frequent causative agents of dermatophytosis in humans, reflecting the frequent human close relationships with pets. Conventional treatment relies on antifungal pharmacological agents. However, errors in application have led to the occurrence of fungal resistance and toxic effects. Consequently, new therapeutic alternatives are needed for M. canis infections. Plant extracts have been explored as phytotherapeutics for the treatment of dermatophyte infections, which prompted an attempt to apply extracts of the ethnopharmacologically important plants Artemisia ludoviciana and Cordia boissieri. Material and Methods: Methanolic extracts of these two plants were obtained using a Soxhlet method and were characterised by phytochemical screening. Extracts were evaluated against a M. canis commercial strain (ATCC-11621) using the microdilution method described in the Clinical and Laboratory Standards Institute protocol M38-A, determining its minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC). Subsequently, these concentrations were tested in a human keratinocyte human cell line. Results: Artemisia ludoviciana and C. boissieri extracts showed MIC values of 2,500 and 1,250 µg/mL, and MFC values of 5,000 and 2,500 µg/mL against M. canis, respectively. These extracts did not inhibit HaCaT cell proliferation in vitro. Conclusion: The evaluated extracts showed potential for the treatment of M. canis fungal infections. However, further studies on their phytochemical characterisation, purification, clinical safety and formulation are required.

6.
Mycoses ; 67(9): e13802, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39323058

ABSTRACT

BACKGROUND: Tinea pedis is one of the most prevalent superficial fungal infections. Initial antifungal treatment is often acquired over-the-counter (OTC) without previous consultation with a physician. OBJECTIVE: Lately, increasing antifungal terbinafine resistance has been documented in Denmark and globally and it is therefore of interest to assess how Danish pharmacies advise customers with tinea pedis. METHODS: One hundred Danish pharmacies were randomly selected and an employee interviewed from each. A structured question guide was followed, with the possibility to add further comments. RESULTS: Interviews of 94 pharmacies were conducted. Six pharmacies never replied. Terbinafine as standard dose or cutaneous solution terbinafine one time application (Lamisil Once (R)) were recommended by 99% of the pharmacy employees as first-line treatment. The customer was advised to seek medical attention when tinea pedis was recurring (93%), or when treatment duration was > 2 weeks (77%). The majority (88%) of the pharmacy employees had no knowledge about antifungal resistance. CONCLUSION: Only few pharmacy employees were aware of the current problem of antifungal resistance and the majority advised costumers to initiate treatment using OTC topical terbinafine. The problem of emerging antifungal resistance requires attention in order to provide customers with tinea pedis effective treatment and prevent further societal spread of resistance to antifungals.


Subject(s)
Antifungal Agents , Drug Resistance, Fungal , Terbinafine , Tinea Pedis , Humans , Antifungal Agents/therapeutic use , Denmark , Terbinafine/therapeutic use , Tinea Pedis/drug therapy , Tinea Pedis/microbiology , Pharmacies , Counseling , Female , Male , Surveys and Questionnaires , Nonprescription Drugs/therapeutic use
7.
J Clin Med ; 13(18)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39336980

ABSTRACT

Background: In recent decades, globalization and international migration have increased the spread of infectious agents, including dermatophytes. Although considered minor infections, dermatophytoses are highly contagious, and they significantly reduce the quality of life, inducing itching, burning, sleep disturbances, and even depressive states. Moreover, the increasing resistance to antifungals threats the public health and burdens the costs for the healthcare system. Methods: DermaGenius® Resistance Multiplex real-time PCR assay allowed to analyze the terbinafine susceptibility/resistance of 172 Trichophyton strains, which were isolated from human and animal samples collected from 2016 to May 2024 and previously identified by Sanger sequencing. Results: All the 11 animal strains belonged to the T. interdigitale/T. mentagrophytes complex and tested terbinafine sensitive. Out of 161 human strains, 9 (5.6%) showed terbinafine resistance and 7 (4.3%) were identified as T. indotineae. Conclusions: This study provides preliminary data about behavior toward antifungals in animals and finalizes the scientific information currently available about human strains, highlighting the importance of the One Health concept. Moreover, it supports the relevant role of T. indotineae as an emerging dermatophyte with high proportion of terbinafine resistance.

8.
Diagn Microbiol Infect Dis ; 110(4): 116527, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39265435

ABSTRACT

Lomentospora prolificans is an uncommon cause of invasive fungal disease, but it is associated with high mortality because it is difficult to treat. Most of severe cases are produced in immunossupressed patients, especially in those with neutropenia and/or hematological malignancies. Resistance to the majority of antifungal agents can be still observed. Here we report two cases of L. prolificans fungemia with different outcome, since in one of these patients treatment with one of the new antifungals could be applied. Both patients were treated with different antifungal drugs, but only the second one survived due to therapy with fosmanogepix®. The current treatment is still based on a combination of conventional antifungal drugs, although in much cases this strategy is not sufficient. The introduction of new promising antifungal agents such as fosmanogepix® and olorofim® may open new perspectives in the treatment of invasive infections caused by L. prolificans, as in our patient.

9.
Rev Iberoam Micol ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39304433

ABSTRACT

BACKGROUND: Aspergillus fumigatus is a ubiquitous opportunistic pathogen. This fungus can acquire resistance to azole antifungals due to different mutations in the cyp51A gene. Azole resistance has been observed in several continents and appears to be a globally distributed phenomenon. Specific mutations in cyp51A that lead to azole resistance, such as the TR34/L98H modification, have been reported. AIMS: To evaluate the azole resistance in clinically isolated A. fumigatus strains. METHODS: As a result of our passive surveillance strategy, a total of 23 A. fumigatus isolates from clinical origins were identified through a phylogenetic analysis using the ITS region and ß-tubulin gene fragments, and typed with the CSP microsatellite. Azole susceptibility profiles were performed by disk diffusion and microdilution broth methodologies according to CLSI guidelines. RESULTS: Here we describe, for the first time, the detection of azole-resistant A. fumigatus isolates from clinical origins in Chile with mutations in the cyp51A gene. In addition to the TR34/L98H mutation, one isolate exhibited an F46Y/M172V/E427K-type mutation. Furthermore, microsatellite typing based on cell surface protein (CSP) was performed, showing the t02 (TR34/L98H), t15 (F46Y/M172V/E427K) and t01 (susceptible clinical isolates) genotypes. CONCLUSIONS: Our study demonstrates the presence of mutations related to azole resistance in A. fumigatus strains isolated from clinical samples in Chile. In order to obtain information that may help to tackle the spread of antifungal resistance among A. fumigatus populations, and to ensure the efficacy of future treatments against aspergillosis, a further research is necessary.

10.
Trends Microbiol ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39304419

ABSTRACT

Traditionally, antifungal resistance (AFR) has received much less attention compared with bacterial resistance to antibiotics. However, global changes, pandemics, and emerging new fungal infections have highlighted global health consequences of AFR. The recent report of the World Health Organisation (WHO) has identified fungal priority pathogens, and recognised AFR among the greatest global health threats. This is particularly important given the significant increase in fungal infections linked to climate change and pandemics. Environmental factors play critical roles in AFR and fungal infections, as many clinically relevant fungal pathogens and AFR originate from the environment (mainly soil). In addition, the environment serves as a potential rich source for the discovery of new antifungal agents, including mycoviruses and bacterial probiotics, which hold promise for effective therapies. In this article, we summarise the environmental pathways of AFR development and spread among high priority fungal pathogens, and propose potential mechanisms of AFR development and spread. We identify a research priority list to address key knowledge gaps in our understanding of environmental AFR. Further, we propose an integrated roadmap for predictive risk management of AFR that is critical for effective surveillance and forecasting of public health outcomes under current and future climatic conditions.

SELECTION OF CITATIONS
SEARCH DETAIL