Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Res Sq ; 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37461581

ABSTRACT

Abdominal aortic aneurysms (AAAs) are prevelant with aging, and AAA rupture is associated with high mortality. There is currently no effective medical therapy for AAA rupture. Previous work demonstrated that the monocyte chemoattractant protein (MCP-1) / C-C chemokine receptor type 2 (CCR2) axis critically regulates AAA inflammation, matrix-metalloproteinase (MMP) production, and extracellular matrix (ECM) stability. Here we similarly observed that Ccr2-/- mice have significantly reduced AAA expansion and rupture. We therefore hypothesized that a dietary modulation of the CCR2 axis may therapeutically impact AAA risk of rupture. Since ketone bodies (KBs) can trigger repair mechanisms in response to inflammation, we specifically evaluated whether systemic ketosis in vivo can reduce CCR2 and AAA progression. Male Sprague-Dawley rats underwent surgical AAA formation using porcine pancreatic elastase (PPE), and received daily ß-aminopropionitrile (BAPN) to promote AAA rupture. Animals with AAAs received either a standard diet (SD), ketogenic diet (KD), or exogenous KBs (EKB). Animals recieving KD and EKB reached a state of ketosis, and had significant reduction in AAA expansion and incidence of rupture. Ketosis also led to significantly reduced aortic CCR2 content, improved MMP balance, and reduced ECM degradation. In summary, this study demonstrates that ketosis plays a crucial role in AAA pathobiology, and provides the impetus for future clinical studies investigating the potential benefit of ketosis for prevention of AAA expansion and rupture.

2.
J Nucl Cardiol ; 30(1): 74-82, 2023 02.
Article in English | MEDLINE | ID: mdl-35501458

ABSTRACT

AIM: Arterial involvement has been implicated in the coronavirus disease of 2019 (COVID-19). Fluorine 18-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) imaging is a valuable tool for the assessment of aortic inflammation and is a predictor of outcome. We sought to prospectively assess the presence of aortic inflammation and its time-dependent trend in patients with COVID-19. METHODS: Between November 2020 and May 2021, in this pilot, case-control study, we recruited 20 patients with severe or critical COVID-19 (mean age of 59 ± 12 years), while 10 age and sex-matched individuals served as the control group. Aortic inflammation was assessed by measuring 18F-FDG uptake in PET/CT performed 20-120 days post-admission. Global aortic target to background ratio (GLA-TBR) was calculated as the sum of TBRs of ascending and descending aorta, aortic arch, and abdominal aorta divided by 4. Index aortic segment TBR (IAS-TBR) was designated as the aortic segment with the highest TBR. RESULTS: There was no significant difference in aortic 18F-FDG PET/CT uptake between patients and controls (GLA-TBR: 1.46 [1.40-1.57] vs. 1.43 [1.32-1.70], respectively, P = 0.422 and IAS-TBR: 1.60 [1.50-1.67] vs. 1.50 [1.42-1.61], respectively, P = 0.155). There was a moderate correlation between aortic TBR values (both GLA and IAS) and time distance from admission to 18F-FDG PET-CT scan (Spearman's rho = - 0.528, P = 0.017 and Spearman's rho = - 0.480, p = 0.032, respectively). Patients who were scanned less than or equal to 60 days from admission (n = 11) had significantly higher GLA-TBR values compared to patients that were examined more than 60 days post-admission (GLA-TBR: 1.53 [1.42-1.60] vs. 1.40 [1.33-1.45], respectively, P = 0.016 and IAS-TBR: 1.64 [1.51-1.74] vs. 1.52 [1.46-1.60], respectively, P = 0.038). There was a significant difference in IAS- TBR between patients scanned ≤ 60 days and controls (1.64 [1.51-1.74] vs. 1.50 [1.41-1.61], P = 0.036). CONCLUSION: This is the first study suggesting that aortic inflammation, as assessed by 18F-FDG PET/CT imaging, is increased in the early post COVID phase in patients with severe or critical COVID-19 and largely resolves over time. Our findings may have important implications for the understanding of the course of the disease and for improving our preventive and therapeutic strategies.


Subject(s)
COVID-19 , Positron Emission Tomography Computed Tomography , Humans , Middle Aged , Aged , Fluorodeoxyglucose F18 , Case-Control Studies , Radiopharmaceuticals , Positron-Emission Tomography , Aorta, Abdominal , Inflammation
3.
JACC Adv ; 2(2): 100277, 2023 Mar.
Article in English | MEDLINE | ID: mdl-38938303

ABSTRACT

Background: Despite advances in the treatment of oncology patients, therapy-related side effects may lead to premature morbidity. Inflammatory activation that has been linked to cardiovascular disease is crucial for the pathogenesis of both Hodgkin (HL) and non-Hodgkin lymphoma (NHL). Objectives: The purpose of this study was to assess the vascular effects of chemotherapy in patients with HL and NHL by positron emission tomography/computed tomography with 18-fluorodeoxyglucose (18-FDG PET/CT) and to investigate interactions with systemic inflammation as assessed by circulating inflammatory markers. Methods: Between July 2015 and July 2019, 65 consecutive patients (mean age 56 ± 17.78 years) with confirmed diagnosis of either HL (n = 33) or NHL (n = 32) were prospectively studied. PET/CT imaging was performed at baseline, at an interim phase, and after first-line treatment. Aortic FDG uptake was assessed by measuring global aortic target-to-background ratio (GLA-TBR). Serum biomarkers interleukin (IL)-6 and IL-1b were measured at each phase. Results: Patients with HL demonstrated significant reduction in aortic TBR after first-line treatment (median GLA-TBR baseline: 1.98, median GLA-TBR third scan: 1.75, median difference = -0.20, 95% CI: -0.07 to -0.33, P = 0.006), which remained significant after adjustment for confounders (adj. R2 of model = 0.53). In contrast, patients with NHL did not demonstrate a significant aortic inflammation response (P = 0.306). Furthermore, patients with HL demonstrated a significant reduction in IL-6 (P = 0.048) and IL-1b (P = 0.045), whereas patients with NHL did not demonstrate significant reduction in IL-6 (P = 0.085) and IL-1b levels (P = 0.476). Conclusions: Aortic inflammation, as assessed by 18-FDG PET/CT, is reduced in HL patients after first-line treatment but not in NHL patients. These findings imply that different pathophysiological pathways and different therapies might affect the arterial bed in different ways for patients with lymphoma.

4.
J Vasc Res ; 59(2): 114-123, 2022.
Article in English | MEDLINE | ID: mdl-35124674

ABSTRACT

Cell death-inducing DFF45-like effector C (CIDEC) is involved in diet-induced adipose inflammation. Whether CIDEC plays a role in diabetic vascular inflammation remains unclear. A type 2 diabetic rat model was induced by high-fat diet and low-dose streptozotocin. We evaluated its characteristics by metabolic tests, Western blot analysis of CIDEC and C1q/tumor necrosis factor-related protein-3 (CTRP3) expression, and histopathological analysis of aortic tissues. The diabetic group exhibited elevated CIDEC expression, aortic inflammation, and remodeling. To further investigate the role of CIDEC in the pathogenesis of aortic inflammation, gene silencing was used. With CIDEC gene silencing, CTRP3 expression was restored, accompanied with amelioration of insulin resistance, aortic inflammation, and remodeling in diabetic rats. Thus, the silencing of CIDEC is potent in mediating the reversal of aortic inflammation and remodeling, indicating that CIDEC may be a potential therapeutic target for vascular complications in diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Insulin Resistance , Animals , Cell Death , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Inflammation/genetics , Proteins/genetics , Proteins/metabolism , Rats
5.
Arthritis Res Ther ; 23(1): 206, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34344436

ABSTRACT

OBJECTIVES: Rheumatoid arthritis (RA) patients have an increased risk of cardiovascular disease (CVD). In the present study, we evaluated the inflammatory activity of the ascending aorta in RA patients who received biological treatment. METHODS: We assessed the aortic wall inflammation of RA patients using 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography before and after 6 months of biologic therapies. We also compared the inflammatory activity at the aortic wall in RA patients with remission or low disease activity (RLDA) and those with moderate or high disease activity (MHDA). The aortic uptake was measured by the standardized uptake value (SUV) and the target-to-background ratio (TBR). RESULTS: A total of 64 patients were included in the analysis (mean age, 58.4 ± 13.8 years old; female, 77%). The Disease Activity Score for 28 joints (DAS28) erythrocyte sedimentation rate (ESR) had significantly decreased after 6 months: from 5.0 ± 1.2 to 3.3 ± 1.2 (p < 0.001). The FDG uptake in the ascending aorta changed from baseline to 6 months, showing a maximum SUV (SUVmax) of 1.83 ± 0.34 to 1.90 ± 0.34 (p = 0.059) and TBR of 1.71 ± 0.23 to 1.75 ± 0.24 (p = 0.222). The SUVmax and TBR after 6 months were significantly higher in the RLDA group than in the MHDA group (2.05 ± 0.32 vs. 1.79 ± 0.33 (p = 0.002) and 1.89 ± 0.33 vs. 1.65 ± 0.20 (p = 0.001), respectively). The percentage of monocytes also significantly increased from baseline to 6 months: from 5.9 ± 1.6 to 6.9 ± 2.6 (p = 0.032). CONCLUSION: The inflammation activity at the ascending aorta in RA patients did not change significantly after 6 months of biological treatment. RA patients with a low disease activity or in clinical remission after 6 months of biological treatment still had an increased inflammatory activity at the aortic wall.


Subject(s)
Arthritis, Rheumatoid , Fluorodeoxyglucose F18 , Adult , Aged , Aorta/diagnostic imaging , Arthritis, Rheumatoid/drug therapy , Biological Therapy , Female , Humans , Inflammation , Middle Aged , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Radiopharmaceuticals
6.
J Am Coll Radiol ; 18(5S): S106-S118, 2021 May.
Article in English | MEDLINE | ID: mdl-33958105

ABSTRACT

Nontraumatic aortic disease can be caused by a wide variety of disorders including congenital, inflammatory, infectious, metabolic, neoplastic, and degenerative processes. Imaging examinations such as radiography, ultrasound, echocardiography, catheter-based angiography, CT, MRI, and nuclear medicine examinations are essential for diagnosis, treatment planning, and assessment of therapeutic response. Depending upon the clinical scenario, each of these modalities has strengths and weaknesses. Whenever possible, the selection of a diagnostic imaging examination should be based upon the best available evidence. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment. The purpose of this document is to assist physicians select the most appropriate diagnostic imaging examination for nontraumatic aortic diseases.


Subject(s)
Aortic Diseases , Societies, Medical , Aortic Diseases/diagnostic imaging , Evidence-Based Medicine , Humans , Magnetic Resonance Imaging , Radiography , United States
7.
Vascul Pharmacol ; 136: 106818, 2021 02.
Article in English | MEDLINE | ID: mdl-33227452

ABSTRACT

OBJECTIVE: Rivaroxaban is a specific factor Xa (FXa) inhibitor for venous thromboembolism treatment. Recently, increasing evidence have reported the beneficial effects of rivaroxaban on treating cardiovascular disorders such as coronary and peripheral artery disease. However, its potential influence on abdominal aortic aneurysm (AAA) remains unclear. This study aims to investigate whether rivaroxaban treatment could attenuate experimental AAA progression and its related mechanisms. APPROACHES AND RESULTS: In human aneurysmal aorta, FXa protein expression was significantly upregulated. Further investigations identified a positive correlation among plasma FXa level, AAA severity (the maximal aortic diameter), and intra-aneurysmal thrombus percentage. In Ang II (angiotensin II)-infused ApoE-/- mice, the administration of high dose rivaroxaban (15 mg/kg/d) for 14 days significantly reduced the maximal aortic diameter, while low dose rivaroxaban (5 mg/kg/d) did not display such a protective role. Although rivaroxaban treatments reduced the incidence of AAA and thrombus formation, these differences did not reach statistical significance. Immunohistochemistry revealed a pronounced aortic remodeling including increased collagen content and enhanced elastin degradation in Ang II-induced AAAs, which was inhibited by high dose rivaroxaban treatment. Further analysis demonstrated that rivaroxaban exerted its protective effects by decreasing leukocyte infiltration, inflammatory cytokines expression, and matrix metalloproteinases (MMPs) expression in the aortic wall. The inhibitory effect of rivaroxaban on aneurysm development was also observed in calcium chloride-induced AAA model. Mechanistically, in human aortic endothelial cells, FXa stimulation increased the expression of inflammatory cytokines (interleukin (IL)-1ß, IL-6, IL-8, monocyte chemoattractant protein-1) and adhesive molecules, which were all reversed by the cotreatment of rivaroxaban. Subsequent monocyte-endothelial cell interaction was enhanced after FXa stimulation and was alleviated by rivaroxaban cotreatment. In addition, FXa induced a significantly heightened expression of MMP2 in human aortic endothelial cells, which was ameliorated by rivaroxaban coadministration. CONCLUSIONS: Rivaroxaban attenuated both angiotensin II- and calcium chloride-induced abdominal aortic aneurysm (AAA) progressions, through inhibiting aortic remodeling and inflammation. Rivaroxaban could be a promising therapeutic agent in attenuating AAA development by counteracting FXa-induced aortic wall inflammation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Aorta, Abdominal/drug effects , Aortic Aneurysm, Abdominal/prevention & control , Aortitis/prevention & control , Factor Xa Inhibitors/pharmacology , Rivaroxaban/pharmacology , Vascular Remodeling/drug effects , Angiotensin II , Animals , Aorta, Abdominal/metabolism , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Aortitis/chemically induced , Aortitis/metabolism , Aortitis/pathology , Calcium Chloride , Cell Adhesion Molecules/metabolism , Cytokines/metabolism , Dilatation, Pathologic , Disease Models, Animal , Disease Progression , Humans , Inflammation Mediators/metabolism , Male , Mice, Knockout, ApoE , Retrospective Studies , Signal Transduction
8.
J Surg Res ; 251: 239-247, 2020 07.
Article in English | MEDLINE | ID: mdl-32172010

ABSTRACT

BACKGROUND: Our previous studies showed that neutrophil infiltration and activation plays an important role in the pathogenesis of abdominal aortic aneurysms (AAA). However, there is a lack of noninvasive, inflammatory cell-specific molecular imaging methods to provide early diagnosis of AAA formation. Formyl peptide receptor 1 (FPR1) is rapidly upregulated on neutrophils during inflammation. Therefore, it is hypothesized that the use of cinnamoyl-F-(D)L-F-(D)L-F-K (cFLFLF), a PEGylated peptide ligand that binds FPR1 on activated neutrophils, would permit accurate and noninvasive diagnosis of AAA via single-photon emission computed tomography (SPECT) imaging. MATERIALS AND METHODS: Male C57BL/6 (wild-type) mice were treated with topical elastase (0.4 U/mL type 1 porcine pancreatic elastase) or heat-inactivated elastase (control), and aortic diameter was measured by video micrometry. Comparative histology was performed on Day 14 to assess neutrophil infiltration in aortic tissue. We performed near-infrared fluorescence imaging using c-FLFLF-Cy7 probe on Days 7 and 14 postelastase treatment and measured fluorescence intensity ex vivo in excised aortic tissue. A separate group of animals were injected with 99mTc-c-FLFLF 2 h before SPECT imaging on Day 14 using a SPECT/computed tomography/positron emission tomography trimodal scanner. Coexpression of neutrophils with c-FLFLF was also performed on aortic tissue by immunostaining on Day 14. RESULTS: Aortic diameter was significantly increased in the elastase group compared with controls on Days 7 and 14. Simultaneously, a marked increase in neutrophil infiltration and elastin degradation as well as decrease in smooth muscle integrity were observed in aortic tissue after elastase treatment compared with controls. Moreover, a significant increase in fluorescence intensity of c-FLFLF-Cy7 imaging probe was also observed in elastase-treated mice on Day 7 (approximately twofold increase) and Day 14 (approximately 2.5-fold increase) compared with respective controls. SPECT imaging demonstrated a multifold increase in signal intensity for 99mTc-cFLFLF radiolabel probe in mice with AAA compared with controls on Day 14. Immunostaining of aortic tissue with c-FLFLF-Cy5 demonstrated a marked increase in coexpression with neutrophils in AAA compared with controls. CONCLUSIONS: cFLFLF, a novel FPR1 ligand, enables quantifiable, noninvasive diagnosis and progression of AAAs. Clinical application of this inflammatory, cell-specific molecular probe using SPECT imaging may permit early diagnosis of AAA formation, enabling targeted therapeutic interventions and preventing impending aortic rupture.


Subject(s)
Aortic Aneurysm/diagnostic imaging , Neutrophil Infiltration , Receptors, Formyl Peptide/metabolism , Technetium/metabolism , Tomography, Emission-Computed, Single-Photon , Animals , Ligands , Male , Mice, Inbred C57BL , Optical Imaging , Organotechnetium Compounds , Receptors, Formyl Peptide/agonists , Technetium/chemistry
9.
Indian J Clin Biochem ; 24(2): 179-83, 2009 Apr.
Article in English | MEDLINE | ID: mdl-23105829

ABSTRACT

Pathogens, especially Gram-negative bacteria or bacterial endotoxin, along with other classical factors, may be involved in inflammatory response within the aortic endothelium during the progression of cardiovascular disease. Studies have shown that bacterial endotoxin activates various inflammatory processes in the body. Our study aims to establish a correlation between endotoxemia and vascular expression of antioxidant enzymes. Swiss albino mice (4 weeks old) were fed a high fat diet for 24 weeks and then were administered Escherichia coli endotoxin intraperitonealy, for 4 weeks. Tissue antioxidant enzymes, serum levels of IL-6 and TNF alpha were measured from the mice. We report that i.p. administration of endotoxin to hyperlipidemic mice resulted in elevation of superoxide dismutase and catalase enzymes, which was paralleled by a systemic reduction of serum cholesterol and LDL expression. Myeloperoxidase levels were also found to be elevated in aortic tissue, while an increase was also observed in the serum cytokine levels.

SELECTION OF CITATIONS
SEARCH DETAIL