Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Article in English | MEDLINE | ID: mdl-39257194

ABSTRACT

BACKGROUND: Arterial hypertension is a primary risk factor for kidney disease. Recent advances have implied a potential link between the apelin system and renal homeostasis. MATERIALS AND METHODS: We used 6- and 12-month-old spontaneously hypertensive rats and age-matched normotensive controls to assess the changes in the renal expression of the apelin receptor by immunohistochemical method. The study also evaluated correlations between the renal apelin receptor's expression and renal injury indicators. RESULTS: The histological analysis showed elevated glomerular sclerosis and tubulointerstitial damage indices in both groups of hypertensive rats compared to age-matched controls. Older rats within each group exhibited higher scores than younger ones. The immunohistochemical analysis revealed varying apelin receptor expression patterns, with tubular expression intensifying both with hypertension severity and age. Glomerular expression was notably higher in older hypertensive rats compared to normotensive controls. We reported significant positive correlations between glomerular apelin receptor expression and glomerular sclerosis index in older hypertensive animals. Similarly, a positive correlation between tubular apelin receptor expression and tubulointerstitial damage index was discovered in hypertensive rats, suggesting hypertension-related changes in apelin receptor expression and renal damage. CONCLUSIONS: Our study found kidney changes and varying apelin receptor correlations in hypertensive rat kidneys, suggesting complex roles needing research.

2.
Biomedicines ; 12(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39200188

ABSTRACT

Angiogenesis, the natural mechanism by which fresh blood vessels develop from preexisting ones, is altered in arterial hypertension (AH), impacting renal function. Studies have shown that hypertension-induced renal damage involves changes in capillary density (CD), indicating alterations in vascularization. We aimed to elucidate the role of the apelin receptor (APLNR), neuronal nitric oxide synthase (nNOS), and vascular endothelial growth factor (VEGF) in hypertension-induced renal damage. We used two groups of spontaneously hypertensive rats aged 6 and 12 months, representing different stages of AH, and compared them to age-matched normotensive controls. The kidney tissue samples were prepared through a well-established protocol. All data analysis was conducted with a dedicated software program. APLNR was localized in tubular epithelial cells and the endothelial cells of the glomeruli, with higher expression in older SHRs. The localization of nNOS and VEGF was similar. The expression of APLNR and nNOS increased with AH progression, while VEGF levels decreased. CD was lower in young SHRs compared to controls and decreased significantly in older SHRs in comparison to age-matched controls. Our statistical analysis revealed significant differences in molecule expression between age groups and varying correlations between the expression of the three molecules and CD.

3.
Mol Neurobiol ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042220

ABSTRACT

Vascular dementia (VD), a progressive vascular cognitive impairment, is characterised by the presence of cerebral hypoperfusion, increased blood-brain barrier permeability, and white matter lesions. Although current treatment strategies primarily focus on risk factors such as hypertension, diabetes, and heart disease, efficient and targeted therapies are lacking and the underlying mechanisms of VD remain unclear. We previously discovered that Apelin receptors (APJ), which are G protein-coupled receptors (GPCRs), can homodimerize and generate signals that are distinct from those of APJ monomers in VD rats. Apelin-13 reduces the level of APJ homodimers and leads to the proliferation of endogenous neural stem cells in the hippocampal dentate gyrus area, suggesting that it has a neuroprotective role. In this study, we established a rat and cellular oxygen-glucose deprivation/reoxygenation VD model to investigate the impact of APJ homodimerisation on autophagy. We found that APJ homodimers protect against VD by inhibiting autophagy through the Gαq and PI3K/Akt/mTOR pathways upon Gαi signalling, both in vivo and in vitro. This discovery provides a promising therapeutic target for chronic cerebral ischaemia-reperfusion diseases and an experimental foundation for the development of drugs that target APJ homodimers.

4.
Article in English | MEDLINE | ID: mdl-38973535

ABSTRACT

Hyperandrogenemia is associated with polycystic ovarian syndrome (PCOS) and imbalances in the pituitary hormones, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels. Apelin and its receptor, APJ (class A, rhodopsin-like G- protein-coupled receptor), belongs to adipokines, and its expression has been shown in the pituitary. It is also well known that, hyperandrogenism and PCOS have deregulation of different adipokines. Whether hyperandrogenism also deregulates the apelin system in the pituitary has yet to be investigated. Thus, we have investigated the expression and localization of apelin and its receptor, APJ, in the letrozole-induced hyperandrogenised pituitary of female mice. Our results showed that the apelin, APJ and androgen receptor (AR) expression were upregulated in the anterior pituitary. Furthermore, the immunostaining of LH exhibited increased abundance than FSH. The circulating LH was also found to be elevated compared to FSH levels. The increased LH synthesis and secretion coincides with elevated apelin system in the pituitary of hyperandrogenised mice. Recently, a direct role of apelin has also been reported in the female pituitary, where apelin inhibits LH secretion. Thus, apelin could be one of the factors for deregulated gonadotropin secretion in hyperandrogenised conditions. However, more research is needed to fully understand the complex interactions between apelin and androgen regarding gonadotropin secretion in hyperandrogenised conditions.

5.
Front Neurosci ; 18: 1379658, 2024.
Article in English | MEDLINE | ID: mdl-38803685

ABSTRACT

Glioblastoma multiforme (GBM) is one of the most common and lethal forms of brain cancer, carrying a very poor prognosis (median survival of ~15 months post-diagnosis). Treatment typically involves invasive surgical resection of the tumour mass, followed by radiotherapy and adjuvant chemotherapy using the alkylating agent temozolomide, but over half of patients do not respond to this drug and considerable resistance is observed. Tumour heterogeneity is the main cause of therapeutic failure, where diverse progenitor glioblastoma stem cell (GSC) lineages in the microenvironment drive tumour recurrence and therapeutic resistance. The apelin receptor is a class A GPCR that binds two endogenous peptide ligands, apelin and ELA, and plays a role in the proliferation and survival of cancer cells. Here, we used quantitative whole slide immunofluorescent imaging of human GBM samples to characterise expression of the apelin receptor and both its ligands in the distinct GSC lineages, namely neural-progenitor-like cells (NPCs), oligodendrocyte-progenitor-like cells (OPCs), and mesenchymal-like cells (MES), as well as reactive astrocytic cells. The data confirm the presence of the apelin receptor as a tractable drug target that is common across the key cell populations driving tumour growth and maintenance, offering a potential novel therapeutic approach for patients with GBM.

6.
Acta Naturae ; 16(1): 111-118, 2024.
Article in English | MEDLINE | ID: mdl-38698964

ABSTRACT

Mesenchymal stem cells (MSCs) possess a strong therapeutic potential in regenerative medicine. ELABELA (ELA) is a 32 amino acid peptide that binds to the apelin peptide jejunum receptor (APJ) to regulate cell proliferation and migration. The aim of this study was to investigate the function of ELA vis-a-vis the MSC proliferation and migration, and further explore the underlying mechanism. We demonstrated that the exogenous supplement of ELA boosts the proliferation and migration ability of MSCs, alongside improved in vitro cell viability. These capabilities were rendered moot upon APJ knockdown. In addition, ELA (5-20 µM) was shown to upregulate the expression of METTL3 in a concentrationdependent pattern, a capacity which was suppressed by APJ reduction, whereas the downregulation of METTL3 expression blocked the beneficial effects induced by ELA. ELA was also observed to upregulate the phosphorylation level of AKT. This ELA-induced activation of the PI3K/AKT pathway, however, is inhibited with knockdown of METTL3. Our data indicate that ELA could act as a promoter of MSC proliferation and migration in vitro through the APJ receptor, something which might be attributed to the activation of the METTL3/PI3K/AKT signaling pathway. Therefore, ELA is a candidate for optimizing MSC-based cell therapy, while METTL3 is a potential target for its promoting action on MSCs.

7.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167257, 2024 08.
Article in English | MEDLINE | ID: mdl-38795836

ABSTRACT

Apelin receptor (APJ), a member of the class A family of G protein-coupled receptor (GPCR), plays a crucial role in regulating cardiovascular and central nervous systems function. APJ influences the onset and progression of various diseases such as hypertension, atherosclerosis, and cerebral stroke, making it an important target for drug development. Our preliminary findings indicate that APJ can form homodimers, heterodimers, or even higher-order oligomers, which participate in different signaling pathways and have distinct functions compared with monomers. APJ homodimers can serve as neuroprotectors against, and provide new pharmaceutical targets for vascular dementia (VD). This review article aims to summarize the structural characteristics of APJ dimers and their roles in physiology and pathology, as well as explore their potential pharmacological applications.


Subject(s)
Apelin Receptors , Protein Multimerization , Humans , Apelin Receptors/metabolism , Apelin Receptors/genetics , Apelin Receptors/chemistry , Animals , Signal Transduction , Atherosclerosis/metabolism , Dementia, Vascular/metabolism , Dementia, Vascular/pathology , Hypertension/metabolism , Hypertension/pathology
8.
Anat Rec (Hoboken) ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618880

ABSTRACT

Recent studies have suggested a connection between disturbances of the apelin system and various cardiac pathologies, including hypertension, heart failure, and atherosclerosis. Vascular endothelial growth factor is crucial for cardiac homeostasis as a critical molecule in cardiac angiogenesis. Neuronal nitric oxide synthase is an essential enzyme producing nitric oxide, a key regulator of vascular tone. The present study aims to shed light upon the complex interactions between these three vital signaling molecules and examine their changes with the progression of hypertensive heart disease. We used two groups of spontaneously hypertensive rats and age-matched Wistar rats as controls. The expression of the apelin receptor, vascular endothelial growth factor, and neuronal nitric oxide synthase were assessed immunohistochemically. We used capillary density and cross-sectional area of the cardiomyocytes as quantitative parameters of cardiac hypertrophy. Immunoreactivity of the molecules was more potent in both ventricles of spontaneously hypertensive rats compared with age-matched controls. However, capillary density was lower in both ventricles of the two age groups of spontaneously hypertensive rats compared with controls, and the difference was statistically significant. In addition, the cross-sectional area of the cardiomyocytes was higher in both ventricles of the two age groups of spontaneously hypertensive rats compared with controls, and the difference was statistically significant. Our study suggests a potential link between the apelin receptor, vascular endothelial growth factor, and neuronal nitric oxide synthase in cardiac homeostasis and the hypertensive myocardium. Nevertheless, further research is required to better comprehend these interactions and their potential therapeutic implications.

9.
Front Pharmacol ; 15: 1369489, 2024.
Article in English | MEDLINE | ID: mdl-38655187

ABSTRACT

Introduction: Pulmonary arterial hypertension (PAH) is characterised by endothelial dysfunction and pathological vascular remodelling, resulting in the occlusion of pulmonary arteries and arterioles, right ventricular hypertrophy, and eventually fatal heart failure. Targeting the apelin receptor with the novel, G protein-biased peptide agonist, MM07, is hypothesised to reverse the developed symptoms of elevated right ventricular systolic pressure and right ventricular hypertrophy. Here, the effects of MM07 were compared with the clinical standard-of-care endothelin receptor antagonist macitentan. Methods: Male Sprague-Dawley rats were randomised and treated with either normoxia/saline, or Sugen/hypoxia (SuHx) to induce an established model of PAH, before subsequent treatment with either saline, macitentan (30 mg/kg), or MM07 (10 mg/kg). Rats were then anaesthetised and catheterised for haemodynamic measurements, and tissues collected for histopathological assessment. Results: The SuHx/saline group presented with significant increases in right ventricular hypertrophy, right ventricular systolic pressure, and muscularization of pulmonary arteries compared to normoxic/saline controls. Critically, MM07 was as at least as effective as macitentan in significantly reversing detrimental structural and haemodynamic changes after 4 weeks of treatment. Discussion: These results support the development of G protein-biased apelin receptor agonists with improved pharmacokinetic profiles for use in human disease.

10.
Cell Biol Int ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634302

ABSTRACT

Apelin and its receptor (APJ) are expressed in the reproductive organs of some mammalian females. The function of oviduct has also been suggested to be compromised in the hyperandrogenism condition. However, expression of apelin and APJ has not been shown in the oviduct of hyperandrogenized mice. Thus, the present study has investigated the localization and expression of apelin and APJ in the letrozole-induced hyperandrogenized mice oviduct. Histomorphometric analysis showed decreased lumen of oviduct in the hyperandrogenized mice. Our results showed elevated expression of APJ and decreased abundance of apelin in the hyperandrogenized mice oviduct. This finding suggests impaired apelin signaling in the oviduct of hyperandrogenized mice. The expression of androgen receptor was upregulated while estrogen receptors were downregulated in the hyperandrogenized mice. The expression of HSP70 was also downregulated along with increased expression of active caspase 3 and BAX and decreased expression of BCL2 in hyperandrogenized mice. Furthermore, the phosphorylation of phospho-Ser473-Akt and phospho-Thr308-Akt also showed differential levels in the oviduct of hyperandrogenized mice. Whether this differential phosphorylation of Akt was solely due to impaired apelin signaling in the oviduct, remains unclear. Moreover, increased androgen signaling and suppressed estrogen signaling coincides with elevated apoptosis. In conclusion, hyperandrogenized conditions could also impair the gamete transport and fertilization process due to apoptosis in the oviduct. However, further study would be required to unravel the exact role of apelin signaling in the oviduct in relation to apoptosis.

11.
Cell ; 187(6): 1460-1475.e20, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38428423

ABSTRACT

Apelin is a key hormone in cardiovascular homeostasis that activates the apelin receptor (APLNR), which is regarded as a promising therapeutic target for cardiovascular disease. However, adverse effects through the ß-arrestin pathway limit its pharmacological use. Here, we report cryoelectron microscopy (cryo-EM) structures of APLNR-Gi1 complexes bound to three agonists with divergent signaling profiles. Combined with functional assays, we have identified "twin hotspots" in APLNR as key determinants for signaling bias, guiding the rational design of two exclusive G-protein-biased agonists WN353 and WN561. Cryo-EM structures of WN353- and WN561-stimulated APLNR-G protein complexes further confirm that the designed ligands adopt the desired poses. Pathophysiological experiments have provided evidence that WN561 demonstrates superior therapeutic effects against cardiac hypertrophy and reduced adverse effects compared with the established APLNR agonists. In summary, our designed APLNR modulator may facilitate the development of next-generation cardiovascular medications.


Subject(s)
Apelin Receptors , Cardiovascular Agents , Drug Design , Apelin Receptors/agonists , Apelin Receptors/chemistry , Apelin Receptors/ultrastructure , Cryoelectron Microscopy , GTP-Binding Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Humans , Cardiovascular Agents/chemistry
12.
J Exp Zool A Ecol Integr Physiol ; 341(4): 450-457, 2024 05.
Article in English | MEDLINE | ID: mdl-38390701

ABSTRACT

The apelin receptor (APJ) belongs to the member of the G protein-coupled receptor family, and expression of APJ has been reported in the different cell types of testis. The seminiferous tubules in the testis can be identified as different stages (I-XII). It has been also suggested that different factors could be expressed in stage and cell-specific manner in the seminiferous tubules. Recently, we also shown that expression of APJ is developmentally regulated in the testis from PND1 to PND42. Therefore, we analyzed the expression of APJ in the testis of adult mice by immunohistochemistry. Immunohistochemistry showed that the APJ was highly specific for the round and elongated spermatids with stage-dependent changes. The seminiferous tubules at stages I-VII showed APJ immunostaining in the spermatid steps 1-8, not steps of 13-16. The seminiferous tubules at stages IX-XII showed APJ immunostaining in the spermatid steps 9-12. These results suggested the possible role of APJ in the spermiogenesis process. The intratesticular administration of APJ antagonist, ML221 showed a few round spermatids in the seminiferous tubules and some of the tubules with complete absence of round spermatid. Overall, we present evidence that APJ expression in spermatid is dependent on the stages of the seminiferous epithelium cycle and APJ could be involved in the differentiation of round spermatid to elongated spermatid.


Subject(s)
Seminiferous Epithelium , Testis , Animals , Male , Mice , Apelin Receptors/metabolism , Seminiferous Epithelium/physiology , Seminiferous Tubules , Spermatids/metabolism
13.
Biochim Biophys Acta Biomembr ; 1866(3): 184289, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278504

ABSTRACT

The apelinergic system encompasses two peptide ligand families, apelin and apela, along with the apelin receptor (AR or APJ), a class A G-protein-coupled receptor. This system has diverse physiological effects, including modulating heart contraction, vasodilation/constriction, glucose regulation, and vascular development, with involvement in a variety of pathological conditions. Apelin peptides have been previously shown to interact with and become structured upon binding to anionic micelles, consistent with a membrane-catalyzed mechanism of ligand-receptor binding. To overcome the challenges of observing nuclear magnetic resonance (NMR) spectroscopy signals of a dilute peptide in biological environments, 19F NMR spectroscopy, including diffusion ordered spectroscopy (DOSY) and saturation transfer difference (STD) experiments, was used herein to explore the membrane-interactive behaviour of apelin. NMR-optimized apelin-17 analogues with 4-trifluoromethyl-phenylalanine at various positions were designed and tested for bioactivity through ERK activation in stably-AR transfected HEK 293 T cells. Far-UV circular dichroism (CD) spectropolarimetry and 19F NMR spectroscopy were used to compare the membrane interactions of these analogues with unlabelled apelin-17 in both zwitterionic/neutral and net-negative bicelle conditions. Each analogue binds to bicelles with relatively weak affinity (i.e., in fast exchange on the NMR timescale), with preferential interactions observed at the cationic residue-rich N-terminal and mid-length regions of the peptide leaving the C-terminal end unencumbered for receptor recognition, enabling a membrane-anchored fly-casting mechanism of peptide search for the receptor. In all, this study provides further insight into the membrane-interactive behaviour of an important bioactive peptide, demonstrating interactions and biophysical behaviour that cannot be neglected in therapeutic design.


Subject(s)
Peptide Hormones , Humans , Apelin/metabolism , Ligands , HEK293 Cells , Peptide Hormones/chemistry , Catalysis
14.
Neuroendocrinology ; 114(3): 234-249, 2024.
Article in English | MEDLINE | ID: mdl-37899035

ABSTRACT

INTRODUCTION: Apelin is an endogenous peptide, whose expression has been shown in the hypothalamus, pituitary, and ovary; furthermore, it is also called a neuropeptide, binding to apelin receptor (APJ) for various functions. It has been suggested that the hypothalamus, pituitary, and ovarian (HPO) axis is tightly regulated and factors and functions of the HPO axis can be modulated during the estrous cycle to influence reproductive status. To the best of our knowledge, the status of apelin and its receptor, APJ has not been investigated in the HPO axis during the estrous cycle. METHODS: To explore the expression of apelin and APJ in the HPO axis of mice during the estrous cycle, mice were divided into four groups: proestrus (Pro), estrus (Est), metestrus (Met), and diestrus (Di), and apelin and APJ were checked. Further, to explore the role of apelin in gonadotropin secretion, an in vitro study of the pituitary was performed at the Pro and Est stages. RESULT: The expression apelin and APJ in the hypothalamus showed elevation during the estrous cycle of postovulatory phases, Met, and Di. The immunolocalization of apelin and APJ in the anterior pituitary showed more abundance in the Est and Di. Our in vitro results showed that gonadotropin-releasing hormone agonist stimulated luteinizing hormone secretion was suppressed by the apelin 13 peptide from the pituitary of Pro and Est phases. This suggests an inhibitory role of apelin on gonadotropin secretion. The ovary also showed conspicuous changes in the presence of apelin and APJ during the estrous cycle. The expression of apelin and APJ coincides with folliculogenesis and corpus luteum formation and the expression of the apelin system in the different cell types of the ovary suggests its cell-specific role. Previous studies also showed that apelin has a stimulatory role in ovarian steroid secretion, proliferation, and corpus luteum. CONCLUSION: Overall our results showed that the apelin system changes along the HPO axis during the estrous cycle and might have an inhibitory at level of hypothalamus and pituitary and a stimulatory role at ovarian level.


Subject(s)
Ovary , Pituitary Diseases , Animals , Female , Mice , Apelin/metabolism , Apelin Receptors/metabolism , Estrous Cycle , Gonadotropins/metabolism , Ovary/metabolism
15.
Life Sci ; 328: 121892, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37364634

ABSTRACT

The apelin receptor (APJ) and the opioid-related nociceptin receptor 1 (ORL1) are family A G protein-coupled receptors that participate in a variety of physiological processes. The distribution and function of APJ and ORL1 in the nervous system and peripheral tissues are similar; however, the detailed mechanism of how these two receptors modulate signaling and physiological effects remains unclear. Here, we examined whether APJ and ORL1 form dimers, and investigated signal transduction pathways. The endogenous co-expression of APJ and ORL1 in SH-SY5Y cells was confirmed by western blotting and RT-PCR. Bioluminescence and fluorescence resonance energy transfer assays, as well as a proximity ligation assay and co-immunoprecipitation experiments, demonstrated that APJ and ORL1 heterodimerize in HEK293 cells. We found that the APJ-ORL1 heterodimer is selectively activated by apelin-13, which causes the dimer to couple to Gαi proteins and reduce the recruitment of GRKs and ß-arrestins to the dimer. We showed that the APJ-ORL1 dimer exhibits biased signaling, in which G protein-dependent signaling pathways override ß-arrestin-dependent signaling pathways. Our results demonstrate that the structural interface of the APJ-ORL1 dimer switches from transmembrane domain TM1/TM2 in the inactive state to TM5 in the active state. We used mutational analysis and BRET assays to identify key residues in TM5 (APJ L2185.55, APJ I2245.61, and ORL1 L2295.52) responsible for the receptor-receptor interaction. These results provide important information on the APJ-ORL1 heterodimer and may assist the design of new drugs targeting biased signaling pathways for treatment of pain and cardiovascular and metabolic diseases.


Subject(s)
Neuroblastoma , Humans , Apelin/metabolism , GTP-Binding Proteins/metabolism , HEK293 Cells , Receptors, G-Protein-Coupled/metabolism , Receptors, Opioid/genetics , Receptors, Opioid/metabolism , Signal Transduction
16.
Biophys Rev ; 15(1): 127-143, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36919024

ABSTRACT

Apelin receptor (APJR) is a class A peptide (apelin) binding G protein-coupled receptor (GPCR) that plays a significant role in regulating blood pressure, cardiac output, and maintenance of fluid homeostasis. It is activated by a wide range of endogenous peptide isoforms of apelin and elabela. The apelin peptide isoforms contain distinct structural features that aid in ligand recognition and activation of the receptor. Site-directed mutagenesis and structure-based studies have revealed the involvement of extracellular and transmembrane regions of the receptor in binding to the peptide isoforms. The structural features of APJR activation of the receptor as well as mediating G-protein and ß-arrestin-mediated signaling are delineated by multiple mutagenesis studies. There is increasing evidence that the structural requirements of APJR to activate G-proteins and ß-arrestins are different, leading to biased signaling. APJR also responds to mechanical stimuli in a ligand-independent manner. A multitude of studies has focused on developing both peptide and non-peptide agonists and antagonists specific to APJR. Apelin/elabela-activated APJR orchestrates major signaling pathways such as extracellular signal-regulated kinase (ERKs), protein kinase B (PKB/Akt), and p70S. This review focuses on the structural and functional characteristics of apelin, elabela, APJR, and their interactions involved in the binding and activation of the downstream signaling cascade. We also focus on the diverse signaling profile of APJR and its ligands and their involvement in various physiological systems.

17.
Front Endocrinol (Lausanne) ; 14: 1139121, 2023.
Article in English | MEDLINE | ID: mdl-36967803

ABSTRACT

Introduction: The apelin receptor binds two distinct endogenous peptides, apelin and ELA, which act in an autocrine/paracrine manner to regulate the human cardiovascular system. As a class A GPCR, targeting the apelin receptor is an attractive therapeutic strategy. With improvements in imaging techniques, and the stability and brightness of dyes, fluorescent ligands are becoming increasingly useful in studying protein targets. Here, we describe the design and validation of four novel fluorescent ligands; two based on [Pyr1]apelin-13 (apelin488 and apelin647), and two based on ELA-14 (ELA488 and ELA647). Methods: Fluorescent ligands were pharmacologically assessed using radioligand and functional in vitro assays. Apelin647 was validated in high content imaging and internalisation studies, and in a clinically relevant human embryonic stem cell-derived cardiomyocyte model. Apelin488 and ELA488 were used to visualise apelin receptor binding in human renal tissue. Results: All four fluorescent ligands retained the ability to bind and activate the apelin receptor and, crucially, triggered receptor internalisation. In high content imaging studies, apelin647 bound specifically to CHO-K1 cells stably expressing apelin receptor, providing proof-of-principle for a platform that could screen novel hits targeting this GPCR. The ligand also bound specifically to endogenous apelin receptor in stem cell-derived cardiomyocytes. Apelin488 and ELA488 bound specifically to apelin receptor, localising to blood vessels and tubules of the renal cortex. Discussion: Our data indicate that the described novel fluorescent ligands expand the pharmacological toolbox for studying the apelin receptor across multiple platforms to facilitate drug discovery.


Subject(s)
Peptide Hormones , Cricetinae , Animals , Humans , Apelin Receptors/metabolism , Ligands , Peptide Hormones/metabolism , Cricetulus , Protein Binding
18.
Pathol Oncol Res ; 29: 1610867, 2023.
Article in English | MEDLINE | ID: mdl-36776217

ABSTRACT

Several reports indicate that apelin is often over-expressed in tumors, and therefore it has been suggested that the apelin-apelin receptor (APJ) system may induce tumor progression. In contrast, our previous research revealed high expression of the apelin-APJ system in tumor blood vessels, suggesting its involvement in the regulation of tumor vessel formation and normalization, resulting in the suppression of tumor growth by promoting the infiltration of T cells. Thus, the effect of the apelin-APJ system on tumors remains controversial. In this report, to clarify the effect of apelin in tumor cells, we analyzed the function of APJ in tumor cells using APJ knock out (KO) mice. In APJ-KO mice, Apelin overexpression in B16/BL6 (B16) melanoma cells induced greater tumor growth than controls. In an APJ-KO melanoma inoculation model, although angiogenesis is suppressed compared to wild type, no difference is evident in tumor growth. We found that APJ deficiency promoted vascular mimicry in tumors. In vitro, cultured APJ-KO B16 cells demonstrated a spindle-like shape. This phenotypic change was thought to be induced by epithelial-mesenchymal transition (EMT) based on evidence that APJ-KO B16 cells show persistently high levels of the mesenchymal maker, Zeb1; however, we found that EMT did not correlate with the transforming growth factor-ß/smad signaling pathway in our model. We propose that apelin-APJ system in cancer cells induces tumor growth but negatively regulates EMT and tumor malignancy.


Subject(s)
Apelin Receptors , Apelin , Melanoma , Animals , Mice , Apelin/genetics , Apelin Receptors/genetics , Melanoma, Cutaneous Malignant
19.
Hum Cell ; 36(2): 612-630, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36692671

ABSTRACT

Mesoderm-derived cells, including bone, muscle, and mesenchymal stem/stromal cells (MSCs), constitute various parts of vertebrate body. Cell therapy with mesoderm specification in vitro may be a promising treatment for diseases affecting organs of mesodermal origin. Repair and regeneration of damaged organs with in vitro generation of mesoderm-derived tissues and MSCs hold a great potential for regenerative therapy. Therefore, understanding the signaling pathways involving mesoderm and mesoderm-derived cellular differentiation is important. Previous findings indicated the importance of Apelin receptor (Aplnr) signaling, during embryonic development, in gastrulation, cell migration, and differentiation. Nevertheless, regulatory role of Aplnr pathway in differentiation of mesoderm and mesoderm-derived MSCs remains unclear. In the current study, we tried to elucidate the role of Aplnr signaling during mesoderm cell migration and differentiation from mouse embryonic stem cells (mESCs). By activating and suppressing Aplnr signaling pathway via peptide, small molecule, and genetic modifications including siRNA- and shRNA-mediated knockdown and CRISPR-Cas9-mediated knockout (KO), we revealed that Aplnr signaling not only induces migration of cells during germ layer formation but also enhances mesoderm differentiation through FGF/MAPK pathway. Antibody array and LC/MS protein profiling data demonstrated that Apelin-13 treatment enhanced cell cycle, EGFR, FGF, Wnt, and Integrin signaling pathway proteins. Furthermore, Aplelin-13 treatment improved MSC characteristics, with mesenchymal phenotype and high expression of MSC markers, and silencing Aplnr signaling components resulted in significantly reduced expression of MSC markers. Also, Aplnr signaling activity enhanced proliferation and survival of the cells during MSC derivation from mesoderm.


Subject(s)
Mouse Embryonic Stem Cells , Signal Transduction , Animals , Female , Mice , Pregnancy , Apelin Receptors/metabolism , Cell Differentiation/physiology , Mesoderm , Stromal Cells
20.
Cardiovasc Drugs Ther ; 37(4): 743-755, 2023 08.
Article in English | MEDLINE | ID: mdl-35460392

ABSTRACT

PURPOSE: AMG 986 is a novel apelin receptor (APJ) agonist that improves cardiac contractility in animal models without adversely impacting hemodynamics. This phase 1b study evaluated the safety/tolerability, pharmacokinetics, and pharmacodynamics of AMG 986 in healthy subjects and patients with heart failure (HF). METHODS: Healthy adults (Parts A/B) and HF patients (Part C) aged 18-85 years were randomized 3:1 to single-dose oral/IV AMG 986 or placebo (Part A); multiple-dose oral/IV AMG 986 or placebo (Part B); or escalating-dose oral AMG 986 or placebo (Part C). PRIMARY ENDPOINT: treatment-emergent adverse events, laboratory values/vital signs/ECGs; others included AMG 986 pharmacokinetics, left ventricular (LV) function. RESULTS: Overall, 182 subjects were randomized (AMG 986/healthy: n = 116, placebo, n = 38; AMG 986/HF: n = 20, placebo, n = 8). AMG 986 had acceptable safety profile; no clinically significant dose-related impact on safety parameters up to 650 mg/day was observed. AMG 986 exposures increased nonlinearly with increasing doses; minimal accumulation was observed. In HF with reduced ejection fraction patients, there were numerical increases in percent changes from baseline in LV ejection fraction and stroke volume by volumetric assessment with AMG 986 vs placebo (stroke volume increase not recapitulated by Doppler). CONCLUSIONS: In healthy subjects and HF patients, short-term AMG 986 treatment was well tolerated. Consistent with this observation, clinically meaningful pharmacodynamic effects in HF patients were not observed. Changes in ejection fraction and stroke volume in HF patients suggest additional studies may be needed to better define the clinical utility and optimal dosing for this molecule. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov NCT03276728. DATE OF REGISTRATION: September 8, 2017.


Subject(s)
Heart Failure , Adult , Humans , Apelin Receptors/therapeutic use , Healthy Volunteers , Double-Blind Method , Heart Failure/diagnosis , Heart Failure/drug therapy , Ventricular Function, Left , Stroke Volume
SELECTION OF CITATIONS
SEARCH DETAIL