Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 333: 121970, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494224

ABSTRACT

Insect cuticles that are mainly made of chitin, chitosan and proteins provide insects with rigid, stretchable and robust skins to defend harsh external environment. The insect cuticle therefore provides inspiration for engineering biomaterials with outstanding mechanical properties but also sustainability and biocompatibility. We herein propose a design of high-performance and sustainable bioplastics via introducing CPAP3-A1, a major structural protein in insect cuticles, to specifically bind to chitosan. Simply mixing 10w/w% bioengineered CPAP3-A1 protein with chitosan enables the formation of plastics-like, sustainably sourced chitosan/CPAP3-A1 composites with significantly enhanced strength (∼90 MPa) and toughness (∼20 MJ m -3), outperforming previous chitosan-based composites and most synthetic petroleum-based plastics. Remarkably, these bioplastics exhibit a stretch-strengthening behavior similar to the training living muscles. Mechanistic investigation reveals that the introduction of CPAP3-A1 induce chitosan chains to assemble into a more coarsened fibrous network with increased crystallinity and reinforcement effect, but also enable energy dissipation via reversible chitosan-protein interactions. Further uniaxial stretch facilitates network re-orientation and increases chitosan crystallinity and mechanical anisotropy, thereby resulting in stretch-strengthening behavior. In general, this study provides an insect-cuticle inspired design of high-performance bioplastics that may serve as sustainable and bio-friendly materials for a wide range of engineering and biomedical application potentials.


Subject(s)
Chitosan , Animals , Chitosan/metabolism , Insecta , Chitin/chemistry , Biocompatible Materials
2.
Prog Biophys Mol Biol ; 178: 103-115, 2023 03.
Article in English | MEDLINE | ID: mdl-36574882

ABSTRACT

As one of the common variable magnetic fields, rotating magnetic field (RMF) plays a crucial role in modern human society. The biological effects of RMF have been studied for over half a century, and various results have been discovered. Several reports have shown that RMF can inhibit the growth of various types of cancer cells in vitro and in vivo and improve clinical symptoms of patients with advanced cancer. It can also affect endogenous opioid systems and rhythm in central nerve systems, promote nerve regeneration and regulate neural electrophysiological activity in the human brain. In addition, RMF can influence the growth and metabolic activity of some microorganisms, alter the properties of fermentation products, inhibit the growth of some harmful bacteria and increase the susceptibility of antibiotic-resistant bacteria to common antibiotics. Besides, there are other biological effects of RMF on blood, bone, prenatal exposure, enzyme activity, immune function, aging, parasite, endocrine, wound healing, and plants. These discoveries demonstrate that RMF have great application potential in health care, medical treatment, fermentation engineering, and even agriculture. However, in some cases like pregnancy, RMF exposure may need to be avoided. Finally, the specific mechanisms of RMF's biological effects remain unrevealed, despite various hypotheses and theories. It does not prevent us from using it for our good.


Subject(s)
Aging , Bone and Bones , Humans , Rotation , Anti-Bacterial Agents , Magnetic Fields
SELECTION OF CITATIONS
SEARCH DETAIL