Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 316
Filter
1.
J Clin Immunol ; 44(7): 149, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896305

ABSTRACT

Chronic granulomatous disease (CGD) primarily results from inherited defects in components of the nicotinamide adenine dinucleotide phosphate oxidase enzyme complex. These include gene defects in cytochrome B-245/558 subunit α/ß and neutrophil cytosolic factors 1, 2, and 4. Recently, homozygous loss-of-function variants in cytochrome B-245 chaperone 1 gene (CYBC1) have been discovered to cause CGD (CYBC1-CGD). Data on variant-proven CGD from low-income countries, the most underprivileged regions of the world, remain sparse due to numerous constraints. Herein, we report the first cohort of patients with CGD from Nepal, a low-income country in the Himalayas' challenging terrain. Our report includes a description of a new case of CYBC1 deficiency who was first diagnosed with CGD at our center. Only a dozen cases of CYBC1-CGD have been described in the literature thus far which have been reviewed comprehensively herein. Most of these patients have had significant infections and autoimmune/inflammatory manifestations. Pulmonary and invasive/disseminated bacterial/fungal infections were the most common followed by skin and soft-tissue infections. Inflammatory bowel disease (IBD) was the most common inflammatory manifestation (median age at diagnosis: 9 years) followed by episodes of recurrent/prolonged fever. Other autoimmune/inflammatory manifestations reported in CYBC1-CGD include acute pancreatitis, hemophagocytic lymphohistiocytosis, systemic granulomatosis, interstitial lung disease, arthritis, autoimmune hemolytic anemia, uveitis, nephritis, and eczema. Our analysis shows that patients with CYBC1-CGD are at a significantly higher risk of IBD-like illness as compared to other forms of CGD which merits further confirmatory studies in the future.


Subject(s)
Granulomatous Disease, Chronic , Humans , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/diagnosis , Nepal/epidemiology , Male , Female , Child , NADPH Oxidases/genetics , NADPH Oxidases/deficiency , Child, Preschool , Adolescent , Mutation/genetics
2.
J Fungi (Basel) ; 10(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667962

ABSTRACT

The genome of the osmophilic Aspergillus wentii, unlike that of the osmotolerant Aspergillus nidulans, contains only the gfdA, but not the gfdB, glycerol 3-phosphate dehydrogenase gene. Here, we studied transcriptomic changes of A. nidulans (reference strain and ΔgfdB gene deletion mutant) and A. wentii (reference strain and An-gfdB expressing mutant) elicited by high osmolarity. A. nidulans showed a canonic hyperosmotic stress response characterized by the upregulation of the trehalose and glycerol metabolism genes (including gfdB), as well as the genes of the high-osmolarity glycerol (HOG) map kinase pathway. The deletion of gfdB caused only negligible alterations in the transcriptome, suggesting that the glycerol metabolism was flexible enough to compensate for the missing GfdB activity in this species. A. wentii responded differently to increased osmolarity than did A. nidulans, e.g., the bulk upregulation of the glycerol and trehalose metabolism genes, along with the HOG pathway genes, was not detected. The expression of An-gfdB in A. wentii did not abolish osmophily, but it reduced growth and caused much bigger alterations in the transcriptome than did the missing gfdB gene in A. nidulans. Flexible glycerol metabolism and hence, two differently regulated gfd genes, may be more beneficial for osmotolerant (living under changing osmolarity) than for osmophilic (living under constantly high osmolarity) species.

3.
Fungal Biol ; 128(2): 1664-1674, 2024 04.
Article in English | MEDLINE | ID: mdl-38575239

ABSTRACT

Although tyrosol is a quorum-sensing molecule of Candida species, it has antifungal activity at supraphysiological concentrations. Here, we studied the effect of tyrosol on the physiology and genome-wide transcription of Aspergillus nidulans to gain insight into the background of the antifungal activity of this compound. Tyrosol efficiently reduced germination of conidia and the growth on various carbon sources at a concentration of 35 mM. The growth inhibition was fungistatic rather than fungicide on glucose and was accompanied with downregulation of 2199 genes related to e.g. mitotic cell cycle, glycolysis, nitrate and sulphate assimilation, chitin biosynthesis, and upregulation of 2250 genes involved in e.g. lipid catabolism, amino acid degradation and lactose utilization. Tyrosol treatment also upregulated genes encoding glutathione-S-transferases (GSTs), increased specific GST activities and the glutathione (GSH) content of the cells, suggesting that A. nidulans can detoxify tyrosol in a GSH-dependent manner even though this process was weak. Tyrosol did not induce oxidative stress in this species, but upregulated "response to nutrient levels", "regulation of nitrogen utilization", "carbon catabolite activation of transcription" and "autophagy" genes. Tyrosol may have disturbed the regulation and orchestration of cellular metabolism, leading to impaired use of nutrients, which resulted in growth reduction.


Subject(s)
Antifungal Agents , Aspergillus nidulans , Phenylethyl Alcohol/analogs & derivatives , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Transcriptome , Glutathione/genetics , Glutathione/metabolism , Glutathione/pharmacology , Carbon/metabolism , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism
4.
J Vet Diagn Invest ; 36(2): 248-253, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38462742

ABSTRACT

Clinical and histologic examination of a 12-y-old client-owned Quarter Horse gelding with pituitary pars intermedia dysfunction revealed dermatitis, cellulitis, and osteomyelitis caused by Aspergillus nidulans, confirmed by a PCR assay. This novel presentation of a fungal disease in a horse was characterized by aggressive local invasion and failure to respond to all medical therapy attempted over a 1-y period. Treatments included systemic and topical antifungals, anti-inflammatories, and use of cellular matrices. Surgical excision was not attempted but should be strongly considered early in the disease process in similar cases if clean margins can be achieved. Postmortem findings were of locally aggressive disease with no dissemination.


Subject(s)
Aspergillus nidulans , Dermatitis , Horse Diseases , Osteomyelitis , Pituitary Diseases , Pituitary Gland, Intermediate , Horses , Male , Animals , Cellulitis/veterinary , Horse Diseases/diagnosis , Horse Diseases/pathology , Pituitary Diseases/diagnosis , Pituitary Diseases/veterinary , Pituitary Gland, Intermediate/pathology , Osteomyelitis/diagnosis , Osteomyelitis/veterinary , Dermatitis/pathology , Dermatitis/veterinary
5.
Fungal Genet Biol ; 171: 103877, 2024 03.
Article in English | MEDLINE | ID: mdl-38447800

ABSTRACT

Airborne fungal spores are a major cause of fungal diseases in humans, animals, and plants as well as contamination of foods. Previous studies found a variety of regulators including VosA, VelB, WetA, and SscA for sporogenesis and the long-term viability in Aspergillus nidulans. To gain a mechanistic understanding of the complex regulatory mechanisms in asexual spores, here, we focused on the relationship between VosA and SscA using comparative transcriptomic analysis and phenotypic studies. The ΔsscA ΔvosA double-mutant conidia have lower spore viability and stress tolerance compared to the ΔsscA or ΔvosA single mutant conidia. Deletion of sscA or vosA affects chitin levels and mRNA levels of chitin biosynthetic genes in conidia. In addition, SscA and VosA are required for the dormant state of conidia and conidial germination by modulating the mRNA levels of the cytoskeleton and development-associated genes. Overall, these results suggest that SscA and VosA play interdependent roles in governing spore maturation, dormancy, and germination in A. nidulans.


Subject(s)
Aspergillus nidulans , Animals , Humans , Spores, Fungal/genetics , Spores, Fungal/metabolism , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , RNA, Messenger , Chitin/genetics
6.
J Fungi (Basel) ; 10(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38392776

ABSTRACT

Wild-type Aspergillus nidulans asexual spores (conidia) are green due to a pigment that protects the spores against ultraviolet light. The pigment is produced by a biosynthetic pathway, the genes of which are dispersed in the genome. The backbone molecule of the pigment is a polyketide synthesized by a polyketide synthase encoded by the wA gene. If wA is not functional, the conidia are white. The polyketide is modified by a laccase encoded by the yA gene and inactivation of yA in an otherwise wild-type background results in yellow spores. Additional spore color mutations have been isolated and mapped to a locus genetically, but the genes that correspond to these loci have not been determined. Spore color markers have been useful historically, and they remain valuable in the molecular genetics era. One can determine if a transforming fragment has been successfully integrated at the wA or yA locus by simply looking at the color of transformant conidia. The genes of the potentially useful color loci chaA (chartreuse conidia) and fwA (fawn conidia) have not been identified previously. We chose a set of candidate genes for each locus by comparing the assembled genome with the genetic map. By systematically deleting these candidate genes, we identified a cytochrome P450 gene (AN10028) corresponding to chaA. Deletions of this gene result in chartreuse conidia and chartreuse mutations can be complemented in trans by a functional copy of this gene. With fwA, we found that the existing fawn mutation, fwA1, is a deletion of 2241 base pairs that inactivates three genes. By deleting each of these genes, we determined that fwA is AN1088, an EthD domain protein. Deletion of AN1088 results in fawn conidia as expected. Neither deletion of chaA nor fwA restricts growth and both should be valuable target loci for transformations. Combinations of deletions have allowed us to investigate the epistasis relationships of wA, yA, chaA and fwA.

7.
Biotechnol Lett ; 46(3): 409-430, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38416309

ABSTRACT

One of the four cutinases encoded in the Aspergillus nidulans genome, ANCUT1, is described here. Culture conditions were evaluated, and it was found that this enzyme is produced only when cutin is present in the culture medium, unlike the previously described ANCUT2, with which it shares 62% amino acid identity. The differences between them include the fact that ANCUT1 is a smaller enzyme, with experimental molecular weight and pI values of 22 kDa and 6, respectively. It shows maximum activity at pH 9 and 60 °C under assayed conditions and retains more than 60% of activity after incubation for 1 h at 60 °C in a wide range of pH values (6-10) after incubations of 1 or 3 h. It has a higher activity towards medium-chain esters and can modify long-chain length hydroxylated fatty acids constituting cutin. Its substrate specificity properties allow the lipophilization of alkyl coumarates, valuable antioxidants and its thermoalkaline behavior, which competes favorably with other fungal cutinases, suggests it may be useful in many more applications.


Subject(s)
Aspergillus nidulans , Carboxylic Ester Hydrolases , Aspergillus nidulans/genetics , Aspergillus nidulans/enzymology , Substrate Specificity , Hydrogen-Ion Concentration , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/chemistry , Temperature , Molecular Weight , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Enzyme Stability , Culture Media/chemistry
8.
Metab Eng ; 82: 147-156, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382797

ABSTRACT

Cyclo-diphenylalanine (cFF) is a symmetrical aromatic diketopiperazine (DKP) found wide-spread in microbes, plants, and resulting food products. As different bioactivities continue being discovered and relevant food and pharmaceutical applications gradually emerge for cFF, there is a growing need for establishing convenient and efficient methods to access this type of compound. Here, we present a robust cFF production system which entailed stepwise engineering of the filamentous fungal strain Aspergillus nidulans A1145 as a heterologous expression host. We first established a preliminary cFF producing strain by introducing the heterologous nonribosomal peptide synthetase (NRPS) gene penP1 to A. nidulans A1145. Key metabolic pathways involving shikimate and aromatic amino acid biosynthetic support were then engineered through a combination of gene deletions of competitive pathway steps, over-expressing feedback-insensitive enzymes in phenylalanine biosynthesis, and introducing a phosphoketolase-based pathway, which diverted glycolytic flux toward the formation of erythrose 4-phosphate (E4P). Through the stepwise engineering of A. nidulans A1145 outlined above, involving both heterologous pathway addition and native pathway metabolic engineering, we were able to produce cFF with titers reaching 611 mg/L in shake flask culture and 2.5 g/L in bench-scale fed-batch bioreactor culture. Our study establishes a production platform for cFF biosynthesis and successfully demonstrates engineering of phenylalanine derived diketopiperazines in a filamentous fungal host.


Subject(s)
Aspergillus nidulans , Dipeptides , Metabolic Engineering , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Bioreactors , Phenylalanine/genetics , Phenylalanine/metabolism
9.
Microb Cell ; 11: 1-15, 2024.
Article in English | MEDLINE | ID: mdl-38225947

ABSTRACT

FurE is a H+ symporter specific for the cellular uptake of uric acid, allantoin, uracil, and toxic nucleobase analogues in the fungus Aspergillus nidulans. Being member of the NCS1 protein family, FurE is structurally related to the APC-superfamily of transporters. APC-type transporters are characterised by a 5+5 inverted repeat fold made of ten transmembrane segments (TMS1-10) and function through the rocking-bundle mechanism. Most APC-type transporters possess two extra C-terminal TMS segments (TMS11-12), the function of which remains elusive. Here we present a systematic mutational analysis of TMS11-12 of FurE and show that two specific aromatic residues in TMS12, Trp473 and Tyr484, are essential for ER-exit and trafficking to the plasma membrane (PM). Molecular modeling shows that Trp473 and Tyr484 might be essential through dynamic interactions with residues in TMS2 (Leu91), TMS3 (Phe111), TMS10 (Val404, Asp406) and other aromatic residues in TMS12. Genetic analysis confirms the essential role of Phe111, Asp406 and TMS12 aromatic residues in FurE ER-exit. We further show that co-expression of FurE-Y484F or FurE-W473A with wild-type FurE leads to a dominant negative phenotype, compatible with the concept that FurE molecules oligomerize or partition in specific microdomains to achieve concentrative ER-exit and traffic to the PM. Importantly, truncated FurE versions lacking TMS11-12 are unable to reproduce a negative effect on the trafficking of co-expressed wild-type FurE. Overall, we show that TMS11-12 acts as an intramolecular chaperone for proper FurE folding, which seems to provide a structural code for FurE partitioning in ER-exit sites.

10.
Mol Microbiol ; 121(1): 18-25, 2024 01.
Article in English | MEDLINE | ID: mdl-37961029

ABSTRACT

Where does one draw the line between primary and secondary metabolism? The answer depends on the perspective. Microbial secondary metabolites (SMs) were at first believed not to be very important for the producers because they are dispensable for growth under laboratory conditions. However, such compounds become important in natural niches of the organisms, and some are of prime importance for humanity. Polyketides are an important group of SMs with aflatoxin as a well-known and well-characterized example. In Aspergillus spp., all 34 afl genes encoding the enzymes for aflatoxin biosynthesis are located in close vicinity on chromosome III in a so-called gene cluster. This led to the assumption that most genes required for polyketide biosynthesis are organized in gene clusters. Recent research, however, revealed an enormous complexity of the biosynthesis of different polyketides, ranging from individual polyketide synthases to a gene cluster producing several compounds, or to several clusters with additional genes scattered in the genome for the production of one compound. Research of the last decade furthermore revealed a huge potential for SM biosynthesis hidden in fungal genomes, and methods were developed to wake up such sleeping genes. The analysis of organismic interactions starts to reveal some of the ecological functions of polyketides for the producing fungi.


Subject(s)
Aflatoxins , Polyketides , Secondary Metabolism/genetics , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Genome, Fungal , Polyketides/metabolism , Multigene Family , Aflatoxins/metabolism , Genes, Fungal
11.
Fitoterapia ; 173: 105790, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38158160

ABSTRACT

Three new furano-lactones, asperilactones A-C (1-3), and two known compounds silvaticol (4) and violaceic acid (5) were isolated from an ethanol extract of Aspergillus nidulans, a fungus isolated from the Annelida Whitmania pigra Whitman (Haemopidae). Their structures were elucidated by a combination of spectroscopy, ECD calculations, comparing optical rotation values, and single-crystal X-ray diffraction analyses. Asperilactone A (1) represented the first example of furano-lactone with an unusual 2-thia-6-oxabicyclo[3.3.0]octane ring system. Asperilactones A and B showed weak toxicity against the HL-60 and RKO.


Subject(s)
Aspergillus nidulans , Lactones/chemistry , Molecular Structure , Crystallography, X-Ray , Spectrum Analysis
12.
mSphere ; 8(6): e0054923, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37971274

ABSTRACT

IMPORTANCE: Transient receptor potential (TRP) ion channels are evolutionarily conserved integral membrane proteins with non-selective ion permeability, and they are widely distributed in mammals and single-cell yeast and serve as crucial mediators of sensory signals. However, the relevant information concerning TRP channels in Aspergillus nidulans remains inadequately understood. In this study, by gene deletion, green fluorescent protein tagging, and cytosolic Ca2+ transient monitoring techniques, the biological functions of three potential TRP channels (TrpA, TrpB, and TrpC) have been explored for which they play distinct and multiple roles in hyphal growth, conidiation, responsiveness to external stress, and regulation of intracellular Ca2+ homeostasis. The findings of this study on the functions of potential TRP channels in A. nidulans may serve as a valuable reference for understanding the roles of TRP homologs in industrial or medical strains of Aspergillus, as well as in other filamentous fungi.


Subject(s)
Aspergillus nidulans , Transient Receptor Potential Channels , Animals , Calcium Signaling/physiology , Aspergillus nidulans/metabolism , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism , Saccharomyces cerevisiae/metabolism , Membrane Proteins/metabolism , Mammals
13.
mBio ; : e0245223, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37943062

ABSTRACT

Asexual spores are the main vehicle used by fungi to disperse to new niches. The Eurotiomycete Aspergillus nidulans is the main reference for the study of the genetic/molecular control of asexual development. In this species, Flb proteins control the expression of the master gene brlA, and thus, loss-of-function mutations in flb (upstream developmental activation [UDA]) genes block brlA transcription and, consequently, the production of conidiophores, the structures bearing asexual spores known as conidia. However, the aconidial phenotype of specific flb mutants, such as that of the ΔflbB strain, is reverted under salt-stress conditions. Previously, we generated a collection of second-site mutants of ΔflbB unable to conidiate on culture medium supplemented with NaH2PO4 (0.65 M). Here, we identified a Gly347Stop mutation within flpA as responsible for the FLIP57 phenotype and characterized the role of the putative cyclin FlpA and the remaining putative components of the C-terminal domain kinase-1 (CTDK-1) complex in A. nidulans and Aspergillus fumigatus. FlpA, Stk47, and FlpB are necessary (i) for timely germination, (ii) in the transition from metulae to phialides (the cells generating conidia) during conidiophore development, and (iii) for the development of sexual structures (cleistothecia) in A. nidulans. The three proteins are nuclear, and the nucleoplasmic localization of Stk47 depends on the activity of FlpA, which correlates with the retention of Stk47 by FlpA in pull-down assays. Overall, this work links the putative CTDK-1 complex of aspergilli with growth and developmental control. Identification of a mutation in flpA as inhibitor of conidiation in A. nidulans and functional characterization of FlpA, Stk47 and FlpB as putative members of the C-terminal domain kinase complex CTDK-1 in A. nidulans and A. fumigatus.IMPORTANCEAspergillus fumigatus has been included by the World Health Organization in the priority list of fungal pathogens because (i) it causes 90% of invasive aspergillosis cases, with a high mortality rate, and (ii) infections are becoming increasingly resistant to azole antifungals. A. nidulans is an opportunistic pathogen and a saprotroph which has served during the last 80 years as a reference system for filamentous fungi. Here, we characterized the role in morphogenesis and development of the putative transcriptional cyclin/kinase complex CTDK-1 in both aspergilli. The null mutants of the corresponding genes showed delayed germination, aberrant conidiophore development, and inhibition of cleistothecia production. While in higher eukaryotes this complex is formed only by a cyclin and a kinase, the fungal complex would incorporate a fungal-specific third component, FlpB, which would enable the interaction between the kinase (Stk47) and the cyclin (FlpA) and may be used as a target for antifungals.

14.
J Fungi (Basel) ; 9(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37998866

ABSTRACT

Manganese superoxide dismutases (MnSODs) play a pivotal role in the preservation of mitochondrial integrity and function in fungi under various endogenous and exogenous stresses. Deletion of Aspergillus nidulans mnSOD/SodB increased oxidative stress sensitivity and apoptotic cell death rates as well as affected antioxidant enzyme and sterigmatocystin productions, respiration, conidiation and the stress tolerance of conidiospores. The physiological consequences of the lack of sodB were more pronounced during carbon starvation than in the presence of glucose. Lack of SodB also affected the changes in the transcriptome, recorded by high-throughput RNA sequencing, in menadione sodium bisulfite (MSB)-exposed, submerged cultures supplemented with glucose. Surprisingly, the difference between the global transcriptional changes of the ΔsodB mutant and the control strain were relatively small, indicating that the SodB-dependent maintenance of mitochondrial integrity was not essential under these experimental conditions. Owing to the outstanding physiological flexibility of the Aspergilli, certain antioxidant enzymes and endogenous antioxidants together with the reduction in mitochondrial functions compensated well for the lack of SodB. The lack of sodB reduced the growth of surface cultures more than of the submerged culture, which should be considered in future development of fungal disinfection methods.

15.
Chem Biodivers ; 20(12): e202301660, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957128

ABSTRACT

Chemical study on marine sponge-derivated fungus Aspergillus nidulans resulted in the isolation of seven depsidones (1-7) and two macrocyclic peptides (8 and 9). Their chemical structures were elucidated by extensive analyses of HRESIMS and NMR spectral data, as well as comparison with the literature. Compound 1 was an undescribed depsidone. All compounds exhibited significant antimicrobial activity (MICs: 2-128 µg/mL) towards at least one of seven microbial strains, including Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, and Candida albicans. Of these, chlorinated depsidones (1-3, and 5) displayed potential antimicrobial activity. Nidulin (2) possessed good activity against tested strains except for S. enterica with MIC values in range of 2-16 µg/mL. Interestingly, undescribed depsidone 1 was selectively bioactive on the Gram-positive bacteria (MICs: 2-4 µg/mL) and yeast (MIC: 8 µg/mL) but inactivity on the Gram-negative bacteria (MICs: >256 µg/mL). Macrocyclic peptides, 8 and 9, displayed modest activity against E. faecalis strain with MIC values of 32 and 128 µg/mL, respectively.


Subject(s)
Anti-Infective Agents , Aspergillus nidulans , Porifera , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests , Peptides/pharmacology
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(10): 159379, 2023 10.
Article in English | MEDLINE | ID: mdl-37659899

ABSTRACT

Filamentous fungi undergo significant cellular morphological changes during their life cycle. It has recently been reported that deletions of genes that are involved in phospholipid synthesis led to abnormal hyphal morphology and differentiation in filamentous fungi. Although these results suggest the importance of phospholipid balance in their life cycle, comprehensive analyses of cellular phospholipids are limited. Here, we performed lipidomic analysis of A. nidulans during morphological changes in a liquid medium and of colonies on a solid medium. We observed that the phospholipid composition and transcription of the genes involved in phospholipid synthesis changed dynamically during the life cycle. Specifically, the levels of phosphatidylethanolamine, and highly unsaturated phospholipids increased during the establishment of polarity. Furthermore, we demonstrated that the phospholipid composition in the hyphae at colony margins is similar to that during conidial germination. Furthermore, we demonstrated that common and characteristic phospholipid changes occurred during germination in A. nidulans and A. oryzae, and that species-specific changes also occurred. These results suggest that the exquisite regulation of phospholipid composition is crucial for the growth and differentiation of filamentous fungi.


Subject(s)
Aspergillus nidulans , Phospholipids , Animals , Aspergillus nidulans/genetics , Life Cycle Stages , Lipidomics , Species Specificity
17.
Microbiol Spectr ; : e0028323, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37676031

ABSTRACT

Several P1B-type ATPases are important Cd2+/Cu2+ pumps in Aspergillus species, and they are tightly associated with the heavy metal stress tolerance of these ascomycetous fungi. To better understand the roles of the two P1B-type ATPases, Aspergillus nidulans CrpA Cd2+/Cu2+ pump (orthologue of the Candida albicans Crp1 Cd2+/Cu2+ pump) and Aspergillus fumigatus PcaA Cd2+ pump (orthologue of the Saccharomyces cerevisiae Pca1 Cd2+ pump), we have generated individual mutants and characterized their heavy metal susceptibilities. The deletion of CrpA in A. nidulans has led to the increased sensitivity of the fungus to stresses induced by Zn2+, Fe2+, or the combination of oxidative-stress-inducing menadione sodium bisulfite and Fe3+. Heterologous expression of A. fumigatus PcaA in the S. cerevisiae pca1 deletion mutant has resulted in enhanced tolerance of the yeast to stresses elicited by Cd2+or Zn2+ but not by Fe2+/Fe3+ or Cu2+. Mammalian host immune defense can attack microbes by secreting Zn2+ or Cu2+, and the oxidative stress induced by host immune systems can also disturb metal (Cu2+, Fe2+, and Zn2+) homeostasis in microbes. In summary, PcaA and CrpA can protect fungal cells from these complex stresses that contribute to the virulence of the pathogenic Aspergillus species. Moreover, due to their presence on the fungal cell surface, these P1B-type ATPases may serve as a novel drug target in the future. IMPORTANCE Mammalian host immune defense disrupts heavy metal homeostasis of fungal pathogens. P1B-type ATPase of Aspergillus fumigatus and Aspergillus nidulans may help to cope with this stress and serve as virulence traits. In our experiments, both A. nidulans Cd2+/Cu2+ pump CrpA and A. fumigatus Cd2+ pump PcaA protected fungal cells from toxic Zn2+, and CrpA also decreased Fe2+ susceptibility most likely indirectly. In addition, CrpA protected cells against the combined stress induced by the oxidative stressor menadione and Fe3+. Since P1B-type ATPases are present on the fungal cell surface, these proteins may serve as a novel drug target in the future.

18.
Appl Microbiol Biotechnol ; 107(22): 6923-6935, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37698610

ABSTRACT

Filamentous fungi are widely used in food fermentation and therapeutic protein production due to their prominent protein secretion and post-translational modification system. Aspergillus nidulans is an important model strain of filamentous fungi, but not a fully developed cell factory for heterologous protein expression. One of the limitations is its relatively low capacity of protein secretion. To alleviate this limitation, in this study, the protein secretory pathway and mycelium morphology were stepwise modified. With eGFP as a reporter protein, protein secretion was significantly enhanced through reducing the degradation of heterologous proteins by endoplasmic reticulum-associated protein degradation (ERAD) and vacuoles in the secretory pathway. Elimination of mycelial aggregation resulted in a 1.5-fold and 1.3-fold increase in secretory expression of eGFP in typical constitutive and inducible expression systems, respectively. Combined with these modifications, high secretory expression of human interleukin-6 (HuIL-6) was achieved. Consequently, a higher yield of secretory HuIL-6 was realized by further disruption of extracellular proteases. Overall, a superior chassis cell of A. nidulans suitable for efficient secretory expression of heterologous proteins was successfully obtained, providing a promising platform for biosynthesis using filamentous fungi as hosts. KEY POINTS: • Elimination of mycelial aggregation and decreasing the degradation of heterologous protein are effective strategies for improving the heterologous protein expression. • The work provides a high-performance chassis host △agsB-derA for heterologous protein secretory expression. • Human interleukin-6 (HuIL-6) was expressed efficiently in the high-performance chassis host △agsB-derA.

19.
BMC Complement Med Ther ; 23(1): 327, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723554

ABSTRACT

BACKGROUND: Fungi are a readily available source of naturally generated colored compounds. These compounds might be used as radiosensitizers for treating cancer cells. METHODS: Aspergillus nidulans was examined for its color-producing ability in Potato dextrose agar (PDA) broth medium. The pigment was characterized by Ultraviolet (UV) spectrophotometer and Gas Chromatography Mass Spectrometry (GC/MS). Pigment extracts from A. nidulans were studied for their cytotoxic effects on the growth of human larynx carcinoma cell line (HEp-2) with or without exposure to γ-radiation at three different doses (5, 10, and 15 Gy). A. nidulans pigment cytotoxic activity was tested against normal Vero cells. Cell apoptosis was studied using flow cytometry. Gene expression of P53, Caspase 3 and Bcl-2 were quantified. RESULTS: Ultraviolet spectrum and GC/MS revealed the ability of Aspergillus nidulans to produce Rhodopin pigment. HEp-2 cells treated with A. nidulans pigment only give IC50 about 208 µg/ml. In contrast, when treated with the pigment +10 Gy Î³-radiation, it give about 115 µg/ml. However, for normal cells, lower cytotoxic activity was detected. Treatment with pigment (208 g/mL) caused about 50% ± 1.0 total apoptosis level and gene expression of P53: 2.3 fold and Caspase 3: 1.84 fold in respect to untreated HEp-2), while Bcl-2 was decreased (Bcl-2: 0.63 fold in respect to untreated HEp-2). Furthermore, treated with pigment (115 µg/mL) + 10Gy caused about 47.41% ± 1.7 total apoptosis level and P53: 2.53 fold and Caspase 3: 2.0 fold in respect to untreated HEp-2, while Bcl-2 was downregulated (Bcl-2: 0.61 fold in respect to untreated HEp-2). CONCLUSION: This study concluded that the anti-cancer activity of Aspergillus nidulans pigment was enhanced by ionizing radiation at 10 Gy, as well as its low cytotoxic activity against normal Vero cells.


Subject(s)
Aspergillus nidulans , Carcinoma , Larynx , Chlorocebus aethiops , Animals , Humans , Caspase 3 , Vero Cells , Tumor Suppressor Protein p53 , Radiation, Ionizing , Cell Line
20.
Front Cell Infect Microbiol ; 13: 1241770, 2023.
Article in English | MEDLINE | ID: mdl-37724291

ABSTRACT

Introduction: Invasive aspergillosis (IA) is the most prevalent infectious complication in patients with chronic granulomatous disease (CGD). Yet, understanding of fungal pathogenesis in the CGD host remains limited, particularly with regards to A. nidulans infection. Methods: We have used a murine model of X-linked CGD to investigate how the pathogenesis of IA varies between A. fumigatus and A. nidulans, comparing infection in both X-linked CGD (gp91-/-) mice and their parent C57BL/6 (WT) mice. A 14-colour flow cytometry panel was used to assess the cell dynamics over the course of infection, with parallel assessment of pulmonary cytokine production and lung histology. Results: We observed a lack of association between pulmonary pathology and infection outcome in gp91-/- mice, with no significant mortality in A. nidulans infected mice. An overwhelming and persistent neutrophil recruitment and IL-1 release in gp91-/- mice following both A. fumigatus and A. nidulans infection was observed, with divergent macrophage, dendritic cell and eosinophil responses and distinct cytokine profiles between the two infections. Conclusion: We have provided an in-depth characterisation of the immune response to pulmonary aspergillosis in an X-linked CGD murine model. This provides the first description of distinct pulmonary inflammatory environments in A. fumigatus and A. nidulans infection in X-linked CGD and identifies several new avenues for further research.


Subject(s)
Aspergillosis , Aspergillus nidulans , Granulomatous Disease, Chronic , Invasive Fungal Infections , Animals , Mice , Mice, Inbred C57BL , Aspergillus fumigatus/genetics , Aspergillus nidulans/genetics , Granulomatous Disease, Chronic/complications , Disease Models, Animal , Cytokines
SELECTION OF CITATIONS
SEARCH DETAIL