Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 13(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38929176

ABSTRACT

Azamethiphos is used in the salmon industry to treat sea lice and is subsequently discharged into the sea, which may affect non-target species (NTS). A rise in seawater temperature could enhance the sensitivity of NTS. Thus, in the present investigation, the combined effects of azamethiphos (0 µg L-1, 15 µg L-1 and 100 µg L-1) and temperature (12 °C and 15 °C) was assessed over time (7 days) in the gonads and gills of the oyster Ostrea chilensis, assessing its oxidative damage (lipid peroxidation and protein carbonyls) and total antioxidant capacity. Our results indicated that in gonads and gills, lipid peroxidation levels increased over time during exposure to both pesticide concentrations. Protein carbonyl levels in gills increased significantly in all experimental treatments; however, in gonads, only pesticide concentration and exposure time effected a significant increase in protein damage. In both, gill and gonad temperature did not influence oxidative damage levels. Total antioxidant capacity in gonads was influenced only by temperature treatment, whereas in the gills, neither temperature nor azamethiphos concentration influenced defensive responses. In conclusion, our results indicated the time of pesticide exposure (both concentrations) had a greater influence than temperature on the cellular damage in this oyster.

2.
Brain Sci ; 13(5)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37239200

ABSTRACT

Organophosphate (OP) and carbamate pesticides are toxic to pests through targeted inhibition of acetylcholinesterase (AChE). However, OPs and carbamates may be harmful to non-target species including humans and could induce developmental neurotoxicity if differentiated or differentiating neurons are particularly vulnerable to neurotoxicant exposures. Hence, this study compared the neurotoxicity of OPs, chlorpyrifos-oxon (CPO), and azamethiphos (AZO) and the carbamate pesticide, aldicarb, to undifferentiated versus differentiated SH-SY5Y neuroblastoma cells. OP and carbamate concentration-response curves for cell viability were undertaken using 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays and cellular bioenergetic capacity assessed via quantitation of cellular ATP levels. Concentration-response curves for inhibition of cellular AChE activity were also generated and the production of reactive oxygen species (ROS) was monitored using a 2',7'-dichlorofluorescein diacetate (DCFDA) assay. The OPs and aldicarb reduced cell viability, cellular ATP levels, and neurite outgrowth in a concentration-dependent fashion, from a threshold concentration of ≥10 µM. Neurotoxic potency was in the order AZO > CPO > aldicarb for undifferentiated cells but CPO > AZO > aldicarb for differentiated cells and this toxic potency of CPO reflected its more extensive induction of reactive oxygen species (ROS) and generation of carbonylated proteins that were characterized by western blotting. Hence, the relative neurotoxicity of the OPs and aldicarb in part reflects non-cholinergic mechanisms that are likely to contribute to developmental neurotoxicity.

3.
Environ Monit Assess ; 195(6): 761, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37249693

ABSTRACT

In this study, the degradation of two organophosphate pesticides, namely, propetamphos and azamethiphos, in the presence of Ag+ at different mole ratios was investigated. Moreover, the kinetic and degradation pathways of both chemicals in the range of 0-60 min were explored. Gas chromatography equipped with a thermionic specific detector was used to investigate the pesticide degradation kinetics and mechanism. The results show that the degradation rate of both pesticides follows first-order kinetic. The first-order rate constant and the half-life of reaction were in the range of 0.002-0.143 min-1, 187-2.1 min, and 0.005-0.164 min-1 and 60-1.8 min, for propetamphos and azamethiphos, respectively, at ambient temperature (25 ºC). Because group containing sulfur atom is a better leaving group than group containing nitrogen, the rate of degradation of azamethiphos is higher than propetamphos. In a higher mole ratio of Ag+ to pesticides, the degradation rate was increased, and it is possible to predict the rate of degradation of pesticides according to the chemical composition of leaving group.


Subject(s)
Pesticides , Silver , Environmental Monitoring
4.
Mar Environ Res ; 183: 105837, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36481714

ABSTRACT

The pesticide azamethiphos used by the salmon industry to treat sea lice, is applied as a bath and subsequently discharged into the sea. The effects of azamethiphos concentration (0, 15 and 100 µg L-1) on the physiology of the Chilean oyster (Ostrea chilensis) at two temperatures (12 and 15 °C) was examined. In all azamethiphos treatments, oysters kept at 15 °C had clearance rates (CR) higher than oysters kept at 12 °C. The oxygen consumption rate (OCR) increased at higher temperatures, except with 100 µg L-1 of azamethiphos, where no changes were observed. Sixty days after the exposure, survival rates of 91 and 79% (15 and 100 µg L-1, respectively), were observed compared to the controls, a situation independent of the experimental temperature. The interaction between temperature and pesticide has detrimental effects on the physiological performance and survival of O. chilensis, and these effects should also be assessed for other non-target species.


Subject(s)
Ostrea , Pesticides , Animals , Pesticides/toxicity , Temperature , Organothiophosphates/toxicity
5.
Mar Genomics ; 65: 100970, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35839704

ABSTRACT

The giant mussel Choromytilus chorus is a marine bivalve commonly collected in central - southern Chile from fishery zones shared with the salmon industry. These economically relevant areas are also affected by the use of pesticides for controlling sea lice infestations in salmon aquaculture. Their main target is the sea louse Caligus rogercresseyi. However, other than some physiological impacts, the molecular effects of delousing drugs in non-target species such as C. chorus remain largely understudied. This study aimed to explore the transcriptome modulation of Trochophore and D larvae stages of C. chorus after exposure to azamethiphos and deltamethrin drugs. Herein, RNA-seq analyses and mRNA-lncRNAs molecular interactions were obtained. The most significant changes were found between different larval development stages exposed to delousing drugs. Notably, significant transcriptional variations were correlated with the drug concentrations tested. The biological processes involved in the development, such as cell movement and transcriptional activity, were mainly affected. Long non-coding RNAs (lncRNAs) were also identified in this species, and the transcription activity showed similar patterns with coding mRNAs. Most of the significantly expressed lncRNAs were associated with genes annotated to matrix metalloproteinases, collagenases, and transcription factors. This study suggests that exposure to azamethiphos or deltamethrin drugs can modulate the transcriptome signatures related to the early development of the giant mussel C. chorus.


Subject(s)
Bivalvia , Copepoda , Fish Diseases , RNA, Long Noncoding , Salmo salar , Animals , Bivalvia/genetics , Copepoda/genetics , Gene Expression Profiling , Salmo salar/genetics , Salmon/genetics , Transcriptome
6.
Sensors (Basel) ; 22(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35408132

ABSTRACT

Azamethiphos (AZA) is an insecticide and neurotoxic agent that causes the inhibition of acetylcholinesterase (AChE). AChE is a vital enzyme for neurotransmission because it metabolizes acetylcholine neurotransmitter at the synaptic cleft and terminates synaptic transmission. It is worth mentioning that organophosphates and carbamates inhibit AChE. These AChE inhibitors bind to the active site of the enzyme and inactivate it, leading to paralysis and death. Herein, for the first time, we develop a sensitive, low-cost, and rapid electrogenerated chemiluminescence (ECL) system for the detection of AZA. The designed ECL sensor was applied for the highly sensitive detection of AZA with a wide dynamic range (from 0.1 µM to 1000 µM) and low detection limit of 0.07 µM (S/N = 3). The practical utility of the sensor demonstrates high recoveries (96-102%) in real samples of lake water and wastewater.


Subject(s)
Insecticides , Ruthenium , 2,2'-Dipyridyl/chemistry , Acetylcholinesterase , Luminescence , Luminescent Measurements , Organothiophosphates , Ruthenium/chemistry
7.
Ecotoxicology ; 31(1): 33-52, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34628582

ABSTRACT

Early life stages of Pink salmon (Oncorhynchus gorbuscha) are at risk of exposure to the active ingredients of chemotherapeutant formulations (hydrogen peroxide [HP], azamethiphos [AZ], emamectin benzoate [EB], cypermethrin [CP] and deltamethrin [DM]) used to control sea lice in salmon aquaculture. LC50 values (95% confidence intervals) for acute 48-h water exposures in order of least to most toxic to seawater-adapted pink salmon fry were: HP (227 [138-418] mg/L), EB (1090 [676-2006] µg/L), AZ (80 [52-161] µg/L), CP (5.1 [3.0-10.5] µg/L), and DM (980 [640-1800] ng/L), and in subchronic 10-d lethality sediment exposure tests: EB (2065 [1384-3720] µg/kg), CP (97 [58-190] µg/kg), and DM (1035 [640-2000] ng/kg). Alterations in behaviour varied between chemicals; no chemical attracted pink salmon fry; fish avoided HP to a limited extent at 50 mg/L), as well as EB (300 µg/L), and AZ (50 µg/L). Significant concentration-dependent decreases in olfactory responsiveness to food extract were seen following AZ, CP and DM exposures that occurred at lower concentrations with longer exposure periods (10 µg/L, 0.5 µg/L and 100 ng/L thresholds at 7 d). Following 10-d sediment exposures, olfaction was only affected by CP exposure at 50 µg/kg. Significant decreases in swimming performance (Ucrit) occured for HP, AZ, CP and DM at concentrations as low as 100 mg/L, 10 µg/L, 2 µg/L and 200 ng/L, respectively. This study provides comprehensive data on the lethal and sublethal effects of aquaculture chemotherapeutant exposure in early life stage pink salmon.


Subject(s)
Copepoda , Fish Diseases , Animals , Aquaculture , Salmon , Seawater , Swimming
8.
Genes (Basel) ; 11(8)2020 07 27.
Article in English | MEDLINE | ID: mdl-32726954

ABSTRACT

Caligus rogercresseyi, commonly known as sea louse, is an ectoparasite copepod that impacts the salmon aquaculture in Chile, causing losses of hundreds of million dollars per year. This pathogen is mainly controlled by immersion baths with delousing drugs, which can lead to resistant traits selection in lice populations. Bioassays are commonly used to assess louse drug sensitivity, but the current procedures may mask relevant molecular responses. This study aimed to discover novel coding genes and non-coding RNAs that could evidence drug sensitivity at the genomic level. Sea lice samples from populations with contrasting sensitivity to delousing drugs were collected. Bioassays using azamethiphos, cypermethrin, and deltamethrin drugs were conducted to evaluate the sensitivity and to collect samples for RNA-sequencing. Transcriptome sequencing was conducted on samples exposed to each drug to evaluate the presence of coding and non-coding RNAs associated with the response of these compounds. The results revealed specific transcriptome patterns in lice exposed to azamethiphos, deltamethrin, and cypermethrin drugs. Enrichment analyses of Gene Ontology terms showed specific biological processes and molecular functions associated with each delousing drug analyzed. Furthermore, novel long non-coding RNAs (lncRNAs) were identified in C. rogercresseyi and tightly linked to differentially expressed coding genes. A significant correlation between gene transcription patterns and phenotypic effects was found in lice collected from different salmon farms with contrasting drug treatment efficacies. The significant correlation among gene transcription patterns with the historical background of drug sensitivity suggests novel molecular mechanisms of pharmacological resistance in lice populations.


Subject(s)
Antiparasitic Agents/pharmacology , Copepoda/drug effects , Copepoda/genetics , Fish Diseases/parasitology , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Salmon/parasitology , Animals , Chile , Drug Resistance/genetics , Host-Parasite Interactions , Transcriptome
9.
Environ Pollut ; 264: 114725, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32388310

ABSTRACT

Anti-sea lice pesticides, used in the salmonid aquaculture industry, are a growing environmental concern due to their potential to adversely affect non-target crustaceans. Azamethiphos and deltamethrin are two bath treatment pesticides used on salmon farms in Norway, however, limited information is available on their impact on European lobster (Homarus gammarus) larvae in the Norwegian marine environment. Here, we firstly report the lethal (LC50) and effective (EC50) concentrations of azamethiphos and deltamethrin for stage I and stage II larvae, following 1-h exposures. Using a hydrodynamic model, we also modelled the dispersal of both compounds into the marine environment around selected Norwegian farms and mapped the potential impact zones (areas that experience LC50 and EC50 concentrations) around each farm. Our data shows that azamethiphos and deltamethrin are acutely toxic to both larval stages, with LC50 and EC50 values below the recommended treatment concentrations. We also show that the azamethiphos impact zones around farms were relatively small (mean area of 0.04-0.2 km2), however deltamethrin impact zones covered much larger areas (mean area of 21.1-39.0 km2). These findings suggest that deltamethrin poses a significant risk to European lobster in the Norwegian marine environment while the impact of azamethiphos may be less severe.


Subject(s)
Copepoda , Fish Diseases , Pesticides , Phthiraptera , Animals , Aquaculture , Larva , Nephropidae , Nitriles , Norway , Organothiophosphates , Pyrethrins
10.
Aquat Toxicol ; 222: 105453, 2020 May.
Article in English | MEDLINE | ID: mdl-32112997

ABSTRACT

Anti-parasitic drugs used in the aquaculture industry are discharged to the sea after treatment of salmon. In this study, the effects of azamethiphos (AZA) in the Salmosan® formulation and deltamethrin (DEL) in the Alpha Max® formulation, have been assessed in Northern shrimp larvae (Pandalus borealis) when administered both separately and in combination. The exposure concentrations were 100 ng/L for AZA and 2 ng/L for DEL, each representing a 1000-fold dilution of the prescribed concentrations for salmon. These two chemicals were combined at these concentrations to give a third treatment (AZA + DEL). When larvae were exposed for two hours on the first, second and third days post hatch (dph), significantly increased mortality and reduced swimming activity were observed for larvae from the DEL and combined AZA + DEL treatments 4 dph, though not in larvae from the AZA treatment. A single pulse exposure, delivered on the first day post hatch, caused similar effects on mortality and swimming activity 4 dph as the three-pulse exposure. Mortality was driven by the presence of DEL in both experiments, with no amplification or reduction of effects observed when DEL and AZA were combined. Larvae were observed for 13 days following the single pulse exposure, with food limitation introduced as an additional stressor on day 4. In the DEL and AZA + DEL treatments mortality continued to increase regardless of food level, with no larvae completing development to stage II. The overriding toxicity of DEL masked any potential effects the reduced food ration may have exerted. Swimming activity was lower for AZA treated larvae than Control larvae 13 dph, when both groups were fed daily, though no other significant changes to mortality, development to stage II, feeding rate or gene expression were observed. Food limited Control and AZA larvae had lower swimming activity and feeding rate than daily fed Control larvae, with expression of pyruvate kinase and myosin genes also downregulated. However, there was no negative effect on survival or successful development to stage II in these treatments. In addition, mesencephalic astrocyte-derived neurotropic factor was downregulated in food limited Control larvae when compared with the daily fed Controls. Results from this study together with reported estimates of dispersion plume concentrations of discharged pesticides indicate that toxic concentrations of deltamethrin could reach shrimp larvae several kilometers from a treated salmon farm.


Subject(s)
Animal Feed , Aquaculture/methods , Larva/drug effects , Pandalidae/drug effects , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Nitriles/toxicity , Organothiophosphates/toxicity , Pyrethrins/toxicity , Salmon/growth & development
11.
Parasitol Res ; 118(9): 2499-2507, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31363921

ABSTRACT

Stable flies (Stomoxys calcitrans Linnaeus, 1758) can have a considerable negative impact on animal well-being, health, and productivity. Since insecticides constitute the mainstay for their control, this study aimed at assessing the occurrence of insecticide resistance in S. calcitrans on dairy farms in Brandenburg, Germany. First, the susceptibility of stable flies from 40 dairy farms to a deltamethrin-impregnated fabric was evaluated using the FlyBox® field test method. Then, S. calcitrans strains from 10 farms were reared in the laboratory, and the offspring was tested against the adulticides deltamethrin and azamethiphos and the larvicides cyromazine and pyriproxyfen. The FlyBox® method indicated 100% resistance in stable flies against deltamethrin. Later, to the offspring of those 10 established laboratory strains previously caught on suspected dairy farms, these field findings could be confirmed with mortalities well below 90% 24 h following topical application of the calculated LD95 of deltamethrin and azamethiphos. The ten strains could therefore be classified as resistant to the tested insecticides. In contrast, exposure to the insect growth regulators cyromazine and pyriproxyfen at their recommended concentrations demonstrated 100% efficacy. Both larvicides inhibited the moulting process of the stable fly larval stages completely, showing that the stable fly strains tested were susceptible to them. The intensive use of insecticides in recent decades has probably promoted the development of insecticide resistance. Systematic surveys in different livestock production systems and vigilance are therefore deemed necessary for estimating the risk of insecticide resistance development on a nationwide scale.


Subject(s)
Insecticide Resistance/physiology , Insecticides/pharmacology , Juvenile Hormones/pharmacology , Larva/drug effects , Muscidae/drug effects , Animals , Farms , Germany , Nitriles/pharmacology , Organothiophosphates/pharmacology , Pyrethrins/pharmacology , Pyridines/pharmacology , Triazines/pharmacology
12.
Sci Total Environ ; 649: 1124-1136, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30308884

ABSTRACT

Aquaculture is currently one of the best prospects to help meet the growing need for protein in the human diet. However, aquaculture development and production result in consequences for the environment and also impact other productive activities. Salmon and trout cage culture has required the use of large quantities of pharmaceuticals in order to control outbreaks and the persistence of different pathogens, including sea lice (parasitic copepods), which cause economic losses of around 0.39 €â€¯Kg-1 of salmon produced. The pharmaceuticals currently used for the control of sea lice (cypermethrin, deltamethrin, azamethiphos, hydrogen peroxide) are applied by in situ immersion treatments, enclosing net pens using tarpaulin and then bathing fish with the pharmaceutical. After treatment the pharmaceuticals are released into the surrounding environment, exposing non-target species. Although the effects of such pharmaceutical exposure has been studied in some species, to date a systematic and exhaustive review of these potential effects has not yet been performed. In this study, an exhaustive review of the literature evaluating lethal and sub-lethal effects of anti-sea lice pharmaceuticals on non-target crustaceans and bivalves was performed, in order to assess the extent of the effects, toxicity, variables affecting such toxicity and identify potential synergistic effects previously unexplored. Our results show clear negative effects at concentrations lower than those used in treatments against sea lice in all of the species studied. Likewise, this study demonstrates knowledge gaps that need to be addressed in order to improve our understanding of the effects of these pharmaceuticals on non-target species, ecosystems in general and other productive activities.


Subject(s)
Antiparasitic Agents/toxicity , Bivalvia/drug effects , Crustacea/drug effects , Water Pollutants, Chemical/toxicity , Animals , Aquaculture
13.
Parasit Vectors ; 11(1): 570, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30376873

ABSTRACT

BACKGROUND: Control of the sea louse Caligus rogercresseyi in the Chilean salmonid industry is reliant on chemical treatments. Azamethiphos was introduced in 2013, although other organophosphates were previously used. In 2014, reduced sensitivity to azamethiphos was detected in the Los Lagos Region using bioassays. The main target of organophosphates is the enzyme acetylcholinesterase (AChE). Mutations in the AChE gene are the main cause of organophosphate resistance in arthropods, including other sea lice. In the present study, we aimed to characterize C. rogercresseyi AChE(s) gene(s) and to study the association between AChE variants and azamethiphos resistance in this sea louse species. METHODS: Samples of adult male and female C. rogercresseyi were collected in the Los Lagos Region in 2014. Twenty-four hour exposure bioassays with azamethiphos were performed to select sensitive and resistant lice. The full-length cDNA coding sequences encoding for two AChEs in C. rogercresseyi were molecularly characterized. One of the AChE genes was screened by direct sequencing in the azamethiphos-selected lice to search for variants. An additional louse sampling was performed before and after an azamethiphos treatment in the field in 2017 to validate the findings. RESULTS: The molecular analysis revealed two putative AChEs in C. rogercresseyi. In silico analysis and 3D modelling of the protein sequences identified both of them as invertebrate AChE type 1; they were named C. rogercresseyi AChE1a and 1b. AChE1a had the characteristics of the main synaptic AChE, while AChE1b lacked some of the important amino acids of a typical AChE. A missense change found in the main synaptic AChE (1a), F318F/V (F290 in Torpedo californica), was associated with survival of C. rogercresseyi at high azamethiphos concentrations (bioassays and field treatment). The amino acid change was located in the acyl pocket of the active-site gorge of the protein. CONCLUSIONS: The present study demonstrates the presence of two types of AChE1 genes in C. rogercresseyi. Although enzymatic assays are needed, AChE1a is most probably the main synaptic AChE. The function of AChE1b is unknown, but evidence points to a scavenger role. The AChE1a F/V318 variant is most probably involved in organophosphate resistance, and can be a good marker for resistance monitoring.


Subject(s)
Acetylcholinesterase/genetics , Antiparasitic Agents/pharmacology , Copepoda/enzymology , Fish Diseases/parasitology , Polymorphism, Genetic/genetics , Salmon/parasitology , Amino Acid Sequence , Animals , Biomarkers , Chile , Copepoda/drug effects , Copepoda/genetics , Drug Resistance , Female , Male , Organothiophosphates/pharmacology , Phylogeny , Sequence Alignment/veterinary
14.
J Fish Dis ; 41(6): 995-1003, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29251354

ABSTRACT

Traditional bioassays are still necessary to test sensitivity of sea lice species to chemotherapeutants, but the methodology applied by the different scientists has varied over time in respect to that proposed in "Sea lice resistance to chemotherapeutants: A handbook in resistance management" (2006). These divergences motivated the organization of a workshop during the Sea Lice 2016 conference "Standardization of traditional bioassay process by sharing best practices." There was an agreement by the attendants to update the handbook. The objective of this article is to provide a baseline analysis of the methodology for traditional bioassays and to identify procedures that need to be addressed to standardize the protocol. The methodology was divided into the following steps: bioassay design; material and equipment; sea lice collection, transportation and laboratory reception; preparation of dilution; parasite exposure; response evaluation; data analysis; and reporting. Information from the presentations of the workshop, and also from other studies, allowed for the identification of procedures inside a given step that need to be standardized as they were reported to be performed differently by the different working groups. Bioassay design and response evaluation were the targeted steps where more procedures need to be analysed and agreed upon.


Subject(s)
Antiparasitic Agents/therapeutic use , Aquaculture/methods , Copepoda/drug effects , Ectoparasitic Infestations/veterinary , Fish Diseases/drug therapy , Animals , Biological Assay , Copepoda/physiology , Ectoparasitic Infestations/drug therapy , Ectoparasitic Infestations/parasitology , Fish Diseases/parasitology , Hydrogen Peroxide/therapeutic use , Ivermectin/analogs & derivatives , Ivermectin/therapeutic use , Organothiophosphates/therapeutic use , Pyrethrins/therapeutic use , Reference Standards
15.
Chemosphere ; 185: 1019-1029, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28763937

ABSTRACT

The pesticides used by the salmon industry to treat sea lice, are applied in situ via a bath solution and are subsequently discharged into the surrounding medium. The effects of cypermethrin, deltamethrin, azamethiphos and hydrogen peroxide were assessed on the performance of Metacarcinus edwardsii larvae, an important crab for Chilean fishery. All larvae were dead or dying after 30 min of exposure to cypermethrin and after 40 min to deltamethrin at concentrations 100 and 20 times lower (0.15 and 0.1 µg L-1, respectively) than the concentrations and exposure times recommended by the manufacturers (CRM) to treat sea lice. Azamethiphos affected all larvae at a concentration 10 times lower than CRM. Hydrogen peroxide had the lowest detrimental effects, but at the CRM, 100% of the larvae were affected. Sub-lethal effects, i.e prolonged developmental time, were observed at concentrations lower than CRM. Repeated exposure to azamethiphos (0.0625-0.5 µg L-1) and hydrogen peroxide (188-1500 mg L-1) had effects on survival. In conclusion, the pesticides used against parasitic copepod tested here, negatively affect non-target crustacean larvae. Due to the product's characteristics, the lethal effects of the pyrethroids probably are restricted to the time and area of application, while the action of azamethiphos may extend to a wider area. Current data are insufficient to accurately dimension the effects of these compounds in the field. More research is required to evaluate the consequences of prolonged developmental times and/or reduction in appendage mobility, so as the effects of these compounds on the pelagic and benthic communities.


Subject(s)
Copepoda/drug effects , Pesticides/toxicity , Animals , Aquaculture , Brachyura , Chile , Fisheries , Larva/drug effects , Nitriles , Organothiophosphates , Pyrethrins , Salmon/parasitology , Toxicity Tests
16.
Prev Vet Med ; 136: 1-10, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-28010902

ABSTRACT

The sea louse is considered an important ectoparasite that affects farmed salmonids around the world. Sea lice control relies heavily on pharmacological treatments in several salmon-producing countries, including Chile. Among options for drug administration, immersion treatments represent the majority of antiparasitic control strategies used in Chile. As a topical procedure, immersion treatments do not induce a long lasting effect; therefore, re-infestation from neighbouring farms may undermine their efficacy. Synchronization of treatments has been proposed as a strategy to improve immersion treatment performance, but it has not been evaluated so far. Using a repeated-measures linear mixed-effect model, we evaluated the impact of treatment synchronization of neighbouring farms (within 10km seaway distance) on the adult lice mean abundance from weeks 2 to 8 post-treatment on rainbow trout and Atlantic salmon farms in Chile, while controlling for external and internal sources of lice before the treatments, and also for environmental and fish-related variables. Results indicate that treatment synchronization was significantly associated with lower adult lice levels from weeks 5 to 7 after treatment. This relationship appeared to be linear, suggesting that higher levels of synchronization may result in lower adult sea lice levels during these weeks. These findings suggest that synchronization can improve the performance of immersion delousing treatments by keeping sea lice levels low for a longer period of time. Our results may be applicable to other regions of the world where immersion treatments are widely used.


Subject(s)
Communicable Disease Control/methods , Copepoda/drug effects , Ectoparasitic Infestations/veterinary , Fish Diseases/prevention & control , Oncorhynchus mykiss , Salmo salar , Animals , Aquaculture/methods , Chile , Copepoda/physiology , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/prevention & control , Fish Diseases/parasitology , Linear Models
17.
Int J Mol Sci ; 17(6)2016 May 31.
Article in English | MEDLINE | ID: mdl-27258252

ABSTRACT

Scientific efforts to elucidate the mechanisms of chemical communication between organisms in marine environments are increasing. This study applied novel molecular technology to outline the effects of two xenobiotic drugs, deltamethrin (DM) and azamethiphos (AZA), on the neurotransmission system of the copepod ectoparasite Caligus rogercresseyi. Transcriptome sequencing and bioinformatics analyses were conducted to evaluate treatment effects on the glutamatergic synaptic pathway of the parasite, which is closely related to chemoreception and neurotransmission. After drug treatment with DM or AZA, stochastic mRNA expression patterns of glutamatergic synapse pathway components were observed. Both DM and AZA promoted a down-regulation of the glutamate-ammonia ligase, and DM activated a metabotropic glutamate receptor that is a suggested inhibitor of neurotransmission. Furthermore, the delousing drugs drove complex rearrangements in the distribution of mapped reads for specific metabotropic glutamate receptor domains. This study introduces a novel methodological approach that produces high-quality results from transcriptomic data. Using this approach, DM and AZA were found to alter the expression of numerous mRNAs tightly linked to the glutamatergic signaling pathway. These data suggest possible new targets for xenobiotic drugs that play key roles in the delousing effects of antiparasitics in sea lice.


Subject(s)
Copepoda/genetics , Gene Expression Profiling/methods , Glutamate-Ammonia Ligase/genetics , Pesticides/pharmacology , Receptors, Metabotropic Glutamate/genetics , Sequence Analysis, RNA/methods , Animals , Chemoreceptor Cells/drug effects , Copepoda/drug effects , Female , Gene Expression Regulation/drug effects , Male , Nitriles/pharmacology , Organothiophosphates/pharmacology , Pyrethrins/pharmacology , Signal Transduction/drug effects , Synaptic Transmission/drug effects
18.
Int J Mol Sci ; 17(5)2016 May 12.
Article in English | MEDLINE | ID: mdl-27187362

ABSTRACT

The extensive use of organophosphates and pyrethroids in the aquaculture industry has negatively impacted parasite sensitivity to the delousing effects of these antiparasitics, especially among sea lice species. The NOTCH signaling pathway is a positive regulator of ABC transporter subfamily C expression and plays a key role in the generation and modulation of pesticide resistance. However, little is known about the molecular mechanisms behind pesticide resistance, partly due to the lack of genomic and molecular information on the processes involved in the resistance mechanism of sea lice. Next-generation sequencing technologies provide an opportunity for rapid and cost-effective generation of genome-scale data. The present study, through RNA-seq analysis, determined that the sea louse Caligus rogercresseyi (C. rogercresseyi) specifically responds to the delousing drugs azamethiphos and deltamethrin at the transcriptomic level by differentially activating mRNA of the NOTCH signaling pathway and of ABC genes. These results suggest that frequent antiparasitic application may increase the activity of inhibitory mRNA components, thereby promoting inhibitory NOTCH output and conditions for increased resistance to delousing drugs. Moreover, data analysis underscored that key functions of NOTCH/ABC components were regulated during distinct phases of the drug response, thus indicating resistance modifications in C. rogercresseyi resulting from the frequent use of organophosphates and pyrethroids.


Subject(s)
Copepoda/metabolism , Nitriles/toxicity , Pesticides/toxicity , Pyrethrins/toxicity , Receptors, Notch/metabolism , Animals , Copepoda/drug effects , Copepoda/genetics , Drug Resistance/genetics , Organothiophosphates/toxicity , Signal Transduction
19.
Environ Toxicol Chem ; 34(7): 1533-42, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25663472

ABSTRACT

Diflubenzuron and teflubenzuron are benzoylureas that are used in aquaculture to control sea lice. Flubenzurons have low toxicity to many marine species such as fish and algae but by their nature are likely to have significant adverse effects on nontarget species such as crustaceans and amphipods. Although the exact mechanism of toxicity is not known, these compounds are thought to inhibit the production of the enzyme chitin synthase during molting of immature stages of arthropods. These chitin synthesis inhibitors are effective against the larval and pre-adult life stages of sea lice. Due to their low solubility and results of recent monitoring studies conducted in Norway, the sediment compartment is considered the most likely reservoir for these compounds and possible remobilization from the sediment to benthic crustaceans could be of importance. For this reason, the epibenthic copepod Tisbe battagliai was selected for investigations into the acute and developmental effects of these compounds. For comparative purposes, azamethiphos was investigated to identify differences in sensitivity and act as a negative control for developmental effects at environmentally relevant concentrations. Standard acute studies with adult copepods showed little or no acute toxicity at milligrams per liter levels with the flubenzurons, whereas a naupliar developmental test demonstrated that environmentally relevant concentrations (e.g., nanograms per liter) caused a complete cessation of molting and finally death in the exposed copepods.


Subject(s)
Benzamides/toxicity , Copepoda/drug effects , Diflubenzuron/toxicity , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Aquaculture , Copepoda/growth & development , Disaccharides/toxicity , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Life Cycle Stages/drug effects , Organothiophosphates/toxicity , Toxicity Tests, Acute , Veterinary Drugs/toxicity
20.
Gene ; 555(2): 231-41, 2015 Jan 25.
Article in English | MEDLINE | ID: mdl-25447902

ABSTRACT

Despite the increasing evidence of the importance of microRNAs (miRNAs) in the regulation of multiple biological processes, the molecular bases supporting this regulation are still barely understood in crustaceans. Therefore, the molecular characterization and transcriptome modulation of the miRNA biogenesis pathway were evaluated in the salmon louse Caligus rogercresseyi, an ectoparasite that constitutes one of the biggest concerns for salmonid aquaculture industry. Hence, RNA-Seq analysis was conducted from six different developmental stages, and also after bioassays with delousing drugs Deltamethrin and Azamethiphos using adult individuals. In silico analysis evidenced 24 putative genes involved in the miRNA pathway such as biogenesis, transport, maturation and miRNA-target interaction. Moreover, 243 putative single nucleotide polymorphisms (SNPs) were identified, 15 of which showed non-synonym mutations. RNA-Seq analysis revealed that CCR4-Not complex subunit 3 (CNOT3) was upregulated at earlier developmental stages (nauplius I-II and copepodid), and also after the exposure to Azamethiphos, but not to Deltamethrin. In contrast, the subunit 7 (CNOT7) showed an inverse expression pattern. Different Argonaute transcripts were associated to chalimus and adult stages, revealing specific expression patterns in response to antiparasitic drugs. Our results suggest novel insights into the regulatory network of the post-transcriptional gene regulation in C. rogercresseyi mediated by miRNAs, evidencing a putative role during the ontogeny and drug response.


Subject(s)
Argonaute Proteins/genetics , Copepoda/genetics , MicroRNAs/metabolism , Polymorphism, Single Nucleotide , Animals , Argonaute Proteins/metabolism , Computational Biology/methods , Contig Mapping , Female , Gene Expression Profiling , Gene Silencing , Male , Mutation , Sequence Analysis, RNA , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL