Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Med Chem ; 15(1): 77-86, 2019.
Article in English | MEDLINE | ID: mdl-29792150

ABSTRACT

BACKGROUND: Benzofurans are heterocyclic compounds with neurotropic activity. Some have been developed for the treatment of acute and degenerative neuronal injuries. OBJECTIVE: The study aimed to evaluate the in silico binding of some promising benzofurans on the GABA receptors, and the in vivo neurotropic activity of benzofuran analogues (BZF 6-10) of gamma-aminobutyric acid (GABA) on a seizure model. METHODS: The ligands with the best physicochemical attributes were docked on two GABA receptors (the alpha-1 subunit of GABAA-R and GBR1 subunit of GABAB-R). Selected benzofuran derivatives were synthesized by a multistep procedure and characterized. To examine the neurotropic effects, mice were pretreated with different concentrations of the compounds prior to PTZ- or 4- AP-induced seizures. We assessed acute toxicity, motor behavior, and the effects on seizures. RESULTS: The tested ligands that complied with Lipinski's rule of five were tested in silico with GABAA-R (ΔG = -5.51 to -5.84 kcal/mol) at the allosteric site for benzodiazepines. They bound to a similar cluster of residues as the reference compound (gaboxadol, ΔG = -5.51 kcal/mol). Synthesis was achieved with good overall yields (42-9.7%). Two compounds were selected for biological tests (BZF-7 and rac-BZF-10) on a mouse model of seizures, induced by pentylenetetrazol (PTZ) or 4-aminopyridine (4-AP). PTZ-induced seizures are associated with GABA receptors, and those 4-AP-induced with the blockage of the delayed rectifier-type potassium channel, which promotes the release of the NMDA-sensitive glutamatergic ionotropic receptor and other neurotransmitters. The biological assays demonstrated that BZF-7 and rac-BZF-10 do not protect against seizures. Indeed, BZF-7 increased the number of PTZ-induced seizures and decreased latency time. The 4-AP model apparently showed a potentiation of seizure effects after administration of the BZF-analogues, evidenced by the incidence and severity of the seizures and reduced latency time. CONCLUSION: The results suggest that the test compounds are GABAergic antagonists with stimulatory activity on the CNS.


Subject(s)
Benzofurans/pharmacology , Central Nervous System Stimulants/pharmacology , GABA-A Receptor Antagonists/pharmacology , GABA-B Receptor Antagonists/pharmacology , Animals , Benzofurans/chemical synthesis , Benzofurans/chemistry , Benzofurans/toxicity , Central Nervous System Stimulants/chemical synthesis , Central Nervous System Stimulants/chemistry , Central Nervous System Stimulants/toxicity , GABA-A Receptor Antagonists/chemical synthesis , GABA-A Receptor Antagonists/chemistry , GABA-A Receptor Antagonists/toxicity , GABA-B Receptor Antagonists/chemical synthesis , GABA-B Receptor Antagonists/chemistry , GABA-B Receptor Antagonists/toxicity , Humans , Ligands , Male , Mice , Molecular Docking Simulation , Receptors, GABA-A/chemistry , Receptors, GABA-B/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL