Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Agric Food Chem ; 71(42): 15485-15496, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37828905

ABSTRACT

Soil salinity is a severe abiotic stress that reduces crop productivity. Recently, there has been growing interest in the application of microbes, mainly plant-growth-promoting bacteria (PGPB), as inoculants for saline land restoration and plant salinity tolerance. Herein, the effects of the plant endophyte G2 on regulating soil N cycle, plant N uptake and assimilate pathways, proline and glycine betaine biosynthesis, and catabolic pathways were investigated in Glycyrrhiza uralensis exposed to salinity. The results indicated that G2 improved the efficiency of N absorption and assimilation of plants by facilitating soil N cycling. Then, G2 promoted the synthesis substrates of proline and glycine betaine and accelerated its synthesis rate, which increased the relative water content and reduced the electrolyte leakage, eventually protecting the membrane system caused by salt stress in G. uralensis. These findings will provide a new idea from soil to plant systems in a salinity environment.


Subject(s)
Glycyrrhiza uralensis , Glycyrrhiza uralensis/metabolism , Proline/metabolism , Bacillus cereus , Betaine/pharmacology , Salt Stress
2.
Ecotoxicol Environ Saf ; 247: 114264, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36334340

ABSTRACT

Salt stress severely affects the growth and productivity of Glycyrrhiza uralensis. Our previous research found that the endophyte Bacillus cereus G2 alleviated the osmotic and oxidative stress in G. uralensis exposed to salinity. However, the mechanism is still unclear. Here, a pot experiment was conducted to analyse the change in parameters related to osmotic adjustment and antioxidant metabolism by G2 in salt-stressed G. uralensis at the physio-biochemistry and transcriptome levels. The results showed that G2 significantly increased proline content by 48 %, glycine betaine content by 75 % due to activated expression of BADH1, and soluble sugar content by 77 % due to upregulated expression of α-glucosidase and SS, which might help to decrease the cell osmotic potential, enable the cell to absorb water, and stabilize the cell's protein and membrane structure, thereby alleviating osmotic stress. Regarding antioxidant metabolism, G2 significantly decreased malondialdehyde (MDA) content by 27 %, which might be ascribed to the increase in superoxide dismutase (SOD) activity that facilitated the decrease in the superoxide radical (O2‾) production rate; it also increased the activities of catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GPX), which helped stabilize the normal level of hydrogen peroxide (H2O2). G2 also increased glutathione (GSH) content by 65 % due to increased glutathione reductase (GR) activity and GSH/GSSG ratio, but G2 decreased oxidized glutathione (GSSG) content by 13 % due to decreased activity of dehydroascorbate reductase (DHAR), which could provide sufficient substrates for the ascorbate-glutathione (AsA-GSH) cycle to eliminate excess H2O2 that was not cleared in a timely manner by the antioxidant enzyme system. Taken together, G2 alleviated osmotic stress by increasing proline, soluble sugar, and glycine betaine contents and alleviated oxidative stress by the synergistic effect of antioxidant enzymes and the AsA-GSH cycle. Therefore, the results may be useful for explaining the mechanism by which endophyte inoculation regulates the salt tolerance of crops.


Subject(s)
Glycyrrhiza uralensis , Seedlings , Bacillus cereus , Transcriptome , Antioxidants , Glutathione Disulfide , Hydrogen Peroxide , Betaine/pharmacology , Salt Stress , Oxidative Stress , Glutathione , Sugars , Proline
3.
Front Plant Sci ; 12: 712363, 2021.
Article in English | MEDLINE | ID: mdl-35058941

ABSTRACT

Salt stress severely threatens the growth and productivity of Glycyrrhiza uralensis. Previous results found that Bacillus cereus G2 enhanced several carbohydrate contents in G. uralensis under salt stress. Here, we analyzed the changes in parameters related to growth, photosynthesis, carbohydrate transformation, and the glycolysis Embden-Meyerhof-Parnas (EMP) pathway-tricarboxylic acid (TCA) cycle by G2 in G. uralensis under salt stress. Results showed that G2 helped G. uralensis-accumulating photosynthetic pigments during photosynthesis, which could further increase starch, sucrose, and fructose contents during carbohydrate transformation. Specifically, increased soluble starch synthase (SSS) activity caused to higher starch content, which could induce α-amylase (AM) and ß-amylase (BM) activities; increased sucrose content due to the increase of sucrose synthase (SS) activity through upregulating the gene-encoding SS, which decreased cell osmotic potential, and consequently, induced invertase and gene-encoding α-glucosidase that decomposed sucrose to fructose, ultimately avoided further water loss; increased fructose content-required highly hexokinase (HK) activity to phosphorylate in G. uralensis, thereby providing sufficient substrate for EMP. However, G2 decreased phosphofructokinase (PFK) and pyruvate kinase (PK) activities during EMP. For inducing the TCA cycle to produce more energy, G2 increased PDH activity that enhanced CA content, which further increased isocitrate dehydrogenase (ICDH) activity and provided intermediate products for the G. uralensis TCA cycle under salt stress. In sum, G2 could improve photosynthetic efficiency and carbohydrate transformation to enhance carbohydrate products, thereby releasing more chemical energy stored in carbohydrates through the EMP pathway-TCA cycle, finally maintain normal life activities, and promote the growth of G. uralensis under salt stress.

SELECTION OF CITATIONS
SEARCH DETAIL