Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Language
Publication year range
1.
Pharmacol Res ; 180: 106246, 2022 06.
Article in English | MEDLINE | ID: mdl-35562014

ABSTRACT

Uncontrolled inflammation and failure to resolve the inflammatory response are crucial factors involved in the progress of inflammatory diseases. Current therapeutic strategies aimed at controlling excessive inflammation are effective in some cases, though they may be accompanied by severe side effects, such as immunosuppression. Phytochemicals as a therapeutic alternative can have a fundamental impact on the different stages of inflammation and its resolution. Biochanin A (BCA) is an isoflavone known for its wide range of pharmacological properties, especially its marked anti-inflammatory effects. Recent studies have provided evidence of BCA's abilities to activate events essential for resolving inflammation. In this review, we summarize the most recent findings from pre-clinical studies of the pharmacological effects of BCA on the complex signaling network associated with the onset and resolution of inflammation and BCA's potential protective functionality in several models of inflammatory diseases, such as arthritis, pulmonary disease, neuroinflammation, and metabolic disease.


Subject(s)
Genistein , Isoflavones , Genistein/pharmacology , Genistein/therapeutic use , Humans , Inflammation/drug therapy , Phytochemicals/pharmacology , Phytotherapy
2.
Braz. J. Pharm. Sci. (Online) ; 58: e19791, 2022. tab, graf
Article in English | LILACS | ID: biblio-1383988

ABSTRACT

Abstract In China, Scutellaria is used for treating inflammatory-related diseases. Baicalin is the main active component of Scutellaria and has protective effects on acute pancreatitis. However, the mechanism of Baicalin is still unclear. In this study, the protective effects of baicalin on acute pancreatitis induced by taurocholate and its mechanism are investigated. In this study, mice were randomly divided into three groups: sham operation, model, and treatment groups. Acute pancreatitis in mice was induced by intraperitoneal injection of taurocholate (35 mg/kg). The treatment group was given baicalin (100 mg/kg) 2 h before acute pancreatitis induction. The mRNA expression levels of miR-429, nuclear factor kappa B65(NF-kB65), toll-like receptor 4(TLR4), TNF receptor associated factor6 (TRAF6), NF-kappa-B inhibitor(IkB), Follistatin-like 1 (FSTL1), and interleukin-1 receptor-associated kinase (IRAK) in the liver tissues 24 h after intraperitoneal injection were detected by RT-PCR. Then, the expression levels of NF-kB65, p-NF-κB65, TLR4, TRAF6, IkB, FSTL1, IRAK, p- IRAK, and p- IkB-а proteins were detected by Western blot. IL-6, TNF-α and IL-1 ß in plasma were measured by ELISA, and histopathological changes in the pancreases of the mice were observed. The results showed that after baicalin treatment, miR-429 expression in the pancreatic tissues and the expression levels of NF-kB65, TLR4, TRAF6, p-IkB-а, FSTL1, and p-IRAK decreased. Similarly, pancreatic myeloperoxidase (MPO) activity and the plasma levels of IL-6, TNF-а, IL-12, IL-1ß1, endotoxin, serum amylase, and lipase were reduced. Thus, the pancreatic injury induced by taurocholate was alleviated. The present study indicates that pretreatment with Baicalin can alleviate acute pancreatic injury induced by taurocholate in mice. The mechanism may be associated with the decreased miR-429 expression, reduced FSTL1 signaling pathway activity, TLR4 and TLR4/MyD88 signaling pathway inhibition, and reduced pancreatic inflammation. FSTL1 is the regulatory target for miR-429


Subject(s)
Animals , Male , Mice , HMGB1 Protein/adverse effects , Scutellaria/adverse effects , Injections/classification , Pancreatitis/pathology , Enzyme-Linked Immunosorbent Assay/instrumentation , Blotting, Western , Receptors, Tumor Necrosis Factor , Follistatin/administration & dosage , Liver/abnormalities
3.
Clin Transl Oncol ; 22(7): 1013-1022, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31650468

ABSTRACT

OBJECTIVE: Chronic inflammation is recognized as a risk factor for colorectal cancer (CRC) development. Baicalin (BI), a major constituent in an anti-inflammatory herb Scutellaria baicalensis, can be biotransformed into baicalein (BE) by the intestinal microbiota. We evaluated the anti-inflammation and anti-CRC effects of the metabolite BE. METHODS: The in vitro biotransformation by human intestinal microbiota from BI into BE has been determined with HPLC. Using a gut-specific ApcMin/+ mouse model, the effects of oral BE on the life span, organ index, and tumor multiplicity were evaluated. The expressions of inflammatory cytokines were determined using ELISA. To verify the in vivo data, the anti-inflammatory and antiproliferative effects of BE were determined with an in vitro cell model. RESULTS: HPLC analysis showed that BI was quickly transformed into BE by the intestinal microbiota. Oral BE (30 mg/kg/day) significantly increased the life span, from 125.2 to 218.4 days (P < 0.01%). BE treatment also decreased intestine index and increased spleen index. Compared with the model group, following BE treatment, tumor numbers were significantly reduced in the small intestine and colon (P < 0.01, P < 0.05, respectively). In the gut tissues, BE treatment significantly reduced inflammatory cytokine levels such as IL-1ß, IL-2, IL-6, IL-10, G-CSF, and GM-CSF. In vitro data supported our in vivo results that the anti-CRC effects of BE were via the inhibition of gut inflammation and induction of cancer cell death. CONCLUSION: Our results suggest that the parent compound BI can be quickly converted into its microbial metabolite BE, which has stronger bioactive effects than BI. Baicalein is an active chemopreventive metabolite for inflammatory associated CRC.


Subject(s)
Antioxidants/pharmacology , Colon/drug effects , Colorectal Neoplasms/pathology , Cytokines/drug effects , Flavanones/pharmacology , Intestine, Small/drug effects , Adenomatous Polyposis Coli Protein/genetics , Animals , Colon/immunology , Colon/pathology , Colorectal Neoplasms/genetics , Cytokines/metabolism , Disease Models, Animal , Flavanones/metabolism , Flavonoids/metabolism , Gastrointestinal Microbiome , HT29 Cells , Humans , Inflammation/metabolism , Intestinal Neoplasms/genetics , Intestinal Neoplasms/pathology , Intestine, Small/immunology , Intestine, Small/pathology , Longevity , Mice , Tumor Burden
4.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;53(12): e9949, 2020. tab, graf
Article in English | LILACS, Coleciona SUS | ID: biblio-1132509

ABSTRACT

Acne is a kind of common, chronic skin condition caused by the inflammation of the sebaceous glands in hair follicles. Recent studies have demonstrated that baicalin (BA) possesses potential anti-inflammatory properties. In this study, we evaluated the anti-inflammatory activity of BA in vitro and in vivo. Heat-killed Propionibacterium acnes-induced THP-1 cells and live P. acnes-injected male Sprague Dawley rats were used for establishing the acne model. The rate of ear swelling was calculated, and the severity was determined by hematoxylin and eosin staining. The production of cytokines [interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF-α)] in the cell supernatant and ear tissue homogenates was measured by ELISA. Protein levels of JNK, ERK, P38, IκBα, P65, Nod-like receptor pyrin domain-containing 3 (NLRP3), pro-caspase-1, and IL-1β in THP-1 cells and ear tissues were detected by western blotting. NLRP3 and IL-1β were detected by immunohistochemistry, and the NLRP3, IL-1β and pro-caspase-1 mRNAs were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that BA decreased the expression of pro-inflammatory cytokines in vitro and in vivo. Moreover, BA down-regulated the phosphorylation of JNK, ERK1/2, and κBα and inhibited the nuclear translocation of p65. Furthermore, BA inhibited the activation of NLRP3 inflammasome, at both the gene and protein levels. Taken together, the results demonstrated that BA might exert its anti-inflammatory activity by inhibiting NF-κB/MAPK signaling pathways and consequently suppressing the activation of the NLRP3 inflammasome both in vivo and in vitro.


Subject(s)
Animals , Male , Rats , Dermatitis/drug therapy , Inflammasomes , Propionibacterium acnes/metabolism , Flavonoids , Signal Transduction , NF-kappa B/metabolism , Rats, Sprague-Dawley , MAP Kinase Signaling System , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Inflammation/chemically induced , Inflammation/drug therapy
5.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;52(7): e8434, 2019. graf
Article in English | LILACS | ID: biblio-1011593

ABSTRACT

The natural flavonoid glycoside baicalin (BA) produces a variety of pharmaceutical effects, particularly for psychiatric/neurological disorders. This study evaluated the behavioral and neuroprotective effects of BA in mice subjected to chronic unpredictable mild stress, a model of depression. BA (25 and 50 mg/kg) significantly increased sucrose consumption and reduced immobility times in the tail suspension and forced swim tests, demonstrating that BA alleviated depression-like behaviors. Moreover, BA reduced the levels of inflammatory cytokines, such as interleukin 1β, interleukin 6, and tumor necrosis factor α, in serum and in the hippocampus. BA also abrogated increases in NMDAR/NR2B and Ca2+/calmodulin-dependent protein kinase II, and the decrease in phosphorylated ERK and reactive oxygen species production in mice subjected to chronic unpredictable mild stress. These findings suggested that the antidepressive effects of BA are due to the regulation of an NMDAR/NR2B-ERK1/2-related pathway and inhibition of inflammatory cytokines and oxidative stress. Thus, BA represents a potential candidate drug for patients suffering from depression.


Subject(s)
Animals , Male , Rabbits , Flavonoids/administration & dosage , Oxidative Stress/drug effects , Hindlimb Suspension/psychology , Depressive Disorder/drug therapy , Interleukin-6/blood , Tumor Necrosis Factor-alpha/blood , Depressive Disorder/metabolism , Depressive Disorder/psychology , Disease Models, Animal , Interleukin-1beta/blood , Mice, Inbred C57BL
6.
Rev. bras. farmacogn ; 28(2): 151-155, Mar.-Apr. 2018. tab, graf
Article in English | LILACS | ID: biblio-958853

ABSTRACT

ABSTRACT In this study, we optimized the baicalin water extraction process from Scutellaria baicalensis Georgi, Lamiaceae (a traditional Chinese medicine). Orthogonal test design L9(3)4 was used to analyze the optimization of water extraction process of baicalin from S. baicalensis. The effect of solid-liquid ratio, extraction time and soaking time on the yield of baicalin were investigated and optimized by orthogonal test. High-performance liquid chromatography was employed for the determination of extraction yield of baicalin. Analysis of variance was carried out to study the effects of the above three factors. The results showed that solid-liquid ratio plays a significant role in attaining maximum extraction yields of baicalin. However, the other two factors had some effect (not statistically significant) on the extraction yield of baicalin. Conclusively, the optimum experimental conditions such as the solid-liquid ratio (1:12), extraction time (30 min) and soaking time (1 h) for the water extraction of baicalin were proposed which can provide the maximum extraction yield of baicalin. In addition, the score based on the content of baicalin and total solid residues yield were used as evaluation indexes for baicalin uterus suppositories evaluation.

7.
J Mol Graph Model ; 76: 181-191, 2017 09.
Article in English | MEDLINE | ID: mdl-28734206

ABSTRACT

Flavonoids are a large group of polyphenolic compounds ubiquitously present in plants. They are important components of human diet. They are recognized as potential drug candidates to be used in the treatment and prevention of a lot of pathological disorders, due to their protective effects. Baicalin (7-glucuronic acid 5, 6-dihydroxyflavone) is one of the main single active constituents isolated from the dried roots of Scutellaria baicalensis Georgi. The great interest on this flavonoid is due to its various pharmacological properties, such as antioxidant, antimicrobial, anti-inflammatory, anticancer and so on, and its high accumulation in the roots of S. baicalensis. The aim of our work was to analyze the geometric and electronic properties of baicalin conformers (BCL), thus performing a complete search on the conformational space of this flavonoid in gas phase and in aqueous solution. The results indicate that the conformational space of baicalin is formed by eight conformers in gas phase and five conformers in aqueous solution optimized at B3LYP/6-311++G** theory level. BCLa2TT and BCLa1TT conformers have low stability in gas phase and very high stability in aqueous solution. This variation is related to a modification in the τ1 angle that represents the relative position of the glucuronide unit respect to the central rings of the flavan nucleus (A and C). This modification was successfully explained by examining the changes in the hydrogen bond (HB) interactions that occur in the region around the hydroxyl group located in position 6 of ring A. Besides, the molecular electrostatic potential (MEP) and frontier molecular orbital (FMO) analyses indicate that BCLa2TT and BCLa1TT conformers are the most favorable conformers for interacting with positively charged species (such as metal ions) in aqueous media (such as biological fluids).


Subject(s)
Flavonoids/chemistry , Glucuronides/chemistry , Hydrogen Bonding , Molecular Conformation , Plant Extracts/chemistry , Scutellaria baicalensis/chemistry , Static Electricity , Water/chemistry
8.
J Inorg Biochem ; 166: 150-161, 2017 01.
Article in English | MEDLINE | ID: mdl-27863301

ABSTRACT

Based on the known antioxidant effect of flavonoids, baicalin (baic) found in roots of Scutellaria has been selected. Its coordination complex with the oxidovanadium(IV) cation, Na4[VO(baic)2].6H2O (VIVO(baic)), was synthesized at pH9 in ethanol and characterized by physicochemical methods. Spectrophotometric studies at pH9 showed a ligand: metal stoichiometry of 2:1. By vibrational spectroscopy a coordination mode through the cis 5-OH and 6-OH deprotonated groups is inferred. EPR spectroscopy shows an environment of four aryloxide (ArO-) groups in the equatorial plane of the VO moiety, both in solution and in the solid complex. The antioxidant capacity against superoxide and peroxyl radicals of VIVO(baic) resulted greater than for baicalin and correlated with previous results obtained for other VOflavonoid complexes. The coordination mode produces delocalization of the electron density and the stabilization of the radical formed by interaction with external radicals. The complex and the ligand displayed no toxic (Artemia salina test) and no mutagenic (Ames test) effects. The complex improved the ability of the ligand to reduce cell viability of human lung cancer cell lines (A549) generating reactive oxygen species (ROS) in cells, being this effect reversed by pre-incubation of the cells with antioxidants such as vitamins C and E. The addition of NAC (N-acetyl-l-cysteine, a sequestering agent of free radicals) suppresses the anticancer effect, confirming the oxidative stress mechanism. The complex interacted with bovine serum albumin (BSA) with stronger binding than baicalin and the mechanisms involved H bonding and van der Waals interactions.


Subject(s)
Antineoplastic Agents , Antioxidants , Coordination Complexes , Flavonoids , Lung Neoplasms/drug therapy , Vanadates , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Drug Screening Assays, Antitumor , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Reactive Oxygen Species/metabolism , Vanadates/chemical synthesis , Vanadates/chemistry , Vanadates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL