Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Pollut ; 348: 123861, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38537796

ABSTRACT

Sediments are important sinks for di-(2-ethylhexyl) phthalate (DEHP), a plasticizer, and thus, maintaining the sediment quality is essential for eliminating plasticizers in aqueous environments and recovering the sediment ecological functions. To mitigate the potential risks of endocrine-disrupting compounds, identifying an effective and eco-friendly degradation process of organic pollutants from sediments is important. However, sustainable and efficient utilization of slow pyrolysis for converting shark fishbone to generate shark fishbone biochar (SFBC) has rarely been explored. Herein, SFBC biomass was firstly produced by externally incorporating heteroatoms or iron oxide onto its surface in conjunction with peroxymonosulfate (PMS) to promote DEHP degradation and explore the associated benthic bacterial community composition from the sediment in the water column using the Fe-N-SFBC/PMS system. SFBC was pyrolyzed at 300-900 °C in aqueous sediment using a carbon-advanced oxidation process (CAOP) system based on PMS. SFBC was rationally modified via N or Fe-N doping as a radical precursor in the presence of PMS (1 × 10-5 M) for DEHP removal. The innovative SFBC/PMS, N-SFBC/PMS, and Fe-N-SFBC/PMS systems could remove 82%, 65%, and 90% of the DEHP at pH 3 in 60 min, respectively. The functionalized Fe3O4 and heteroatom (N) co-doped SFBC composite catalysts within a hydroxyapatite-based structure demonstrated the efficient action of PMS compared to pristine SFBC, which was attributed to its synergistic behavior, generating reactive radicals (SO4•-, HO•, and O2•-) and non-radicals (1O2) involved in DEHP decontamination. DEHP was significantly removed using the combined Fe-N-SFBC/PMS system, revealing that indigenous benthic microorganisms enhance their performance in DEHP-containing sediments. Further, DEHP-induced perturbation was particularly related to the Proteobacteria phylum, whereas Sulfurovum genus and Sulfurovum lithotrophicum species were observed. This study presents a sustainable method for practical, green marine sediment remediation via PMS-CAOP-induced processes using a novel Fe-N-SFBC composite material and biodegradation synergy.


Subject(s)
Charcoal , Diethylhexyl Phthalate , Phthalic Acids , Plasticizers , Peroxides , Carbon , Geologic Sediments
2.
Mar Pollut Bull ; 194(Pt A): 115418, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37611338

ABSTRACT

The implementation of sustainable system designs in aquaculture comprises the biological treatment of pollutants. In order to test the potential of Holothuria (Roweothuria) poli as a candidate for bioremediation of aquaculture wastes, the effect of this species on the benthic microbial activity was studied. Two experimental treatments, with and without holothuroids, were allocated in two benthocosms, each one containing four replicate tanks with undisturbed sediment and a volume of water above it. It was anticipated that H. poli could affect the overall assimilative capacity of the aquaculture effluent system either through the consumption of particulate organic matter or through the stimulation of benthic microbial metabolism. Indeed, the results indicated that the microbial activity related to the mineralization of the N and C was significantly different between the treatments verifying our hypothesis that deposit-feeders that move above or inside the sediment matrix can accelerate the depletion of organic matter through bioturbation.


Subject(s)
Aquaculture , Environmental Pollutants , Biodegradation, Environmental , Particulate Matter , Water
3.
Mar Pollut Bull ; 184: 114143, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36182786

ABSTRACT

Coral reef ecosystems in the Persian Gulf are frequently exposed to crude oil spills. We investigated benthic bacterial and eukaryote community structures at such coral reef sites subjected to different degrees of polycyclic aromatic hydrocarbon (PAH) pollution using environmental DNA (eDNA) metabarcoding. Both bacterial and eukaryote communities responded with pronounced shifts to crude oil pollution and distinguished control sites, moderately and heavily impacted sites with significant confidentiality. The observed community patterns were predominantly driven by Alphaproteobacteria and metazoans. Among these, we identified individual genera that were previously linked to oil spill stress, but also taxa, for which a link to hydrocarbon still remains to be established. Considering the lack of an early-warning system for the environmental status of coral reef ecosystems exposed to frequent crude-oil spills, our results encourage further research towards the development of an eDNA-based biomonitoring tool that exploits benthic bacterial and eukaryote communities as bioindicators.


Subject(s)
Anthozoa , DNA, Environmental , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Animals , Coral Reefs , Petroleum Pollution/analysis , Petroleum/toxicity , Eukaryota , Ecosystem , Indian Ocean , Environmental Biomarkers , Polycyclic Aromatic Hydrocarbons/toxicity , Bacteria/genetics , Hydrocarbons
4.
Harmful Algae ; 77: 18-28, 2018 07.
Article in English | MEDLINE | ID: mdl-30005799

ABSTRACT

The frequent occurrence of Microcystis aeruginosa blooms benefit from the dormant Microcystis cells, which will be recruited from sediment into overlying water to form a dominant population and algal blooms when external environmental conditions are suitable. Previous studies have unveiled factors involved in M. aeruginosa recruitment and bloom initiation, including nutrition, illumination, temperature, and hydrodynamic force. In this study, three dominant benthic bacterial species isolated from Lake Chongtian with frequent blooms-forming were identified through next generation sequencing (NGS) techniques, and laboratory experiments were conducted on the recruitment of dormant M. aeruginosa cells via co-culture with these bacteria at 10 °C, 15 °C, 20 °C and 25 °C. The results showed that the bacterial strains in sediment proliferated quickly before recruitment of dormant M. aeruginosa cells, subsequently significantly promoted the recruitment of dormant M. aeruginosa via allelochemical (metabolite) production, lower N:P values and lower dissolved oxygen concentrations in the sediment-water interface, and enhanced photosynthesis of M. aeruginosa cells. Furthermore, dormant M. aeruginosa was recruited from sediment at 10 °C when bacterial activity was present, but not recruited when bacterial activity was absent. At 15 °C,20 °Cand 25 °C, there were no remarkable differences in the recruitment rate of dormant M. aeruginosa cells among all bacterial groups, although their recruitment rate were significantly higher than that at 10 °C.These findings suggested that, under laboratory conditions, three benthic bacteria not only had a great influence on promoting the recruitment of dormant M. aeruginosa cells under desirable temperatures, but also can spur recruitment of dormant M. aeruginosacells from sediment at lower temperature (10 °C).


Subject(s)
Harmful Algal Bloom , Lakes/microbiology , Microcystis/physiology , Bacterial Physiological Phenomena , China , Population Dynamics , Species Specificity
5.
Sci Adv ; 2(4): e1500961, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27386507

ABSTRACT

Bacteria and archaea dominate the biomass of benthic deep-sea ecosystems at all latitudes, playing a crucial role in global biogeochemical cycles, but their macroscale patterns and macroecological drivers are still largely unknown. We show the results of the most extensive field study conducted so far to investigate patterns and drivers of the distribution and structure of benthic prokaryote assemblages from 228 samples collected at latitudes comprising 34°N to 79°N, and from ca. 400- to 5570-m depth. We provide evidence that, in deep-sea ecosystems, benthic bacterial and archaeal abundances significantly increase from middle to high latitudes, with patterns more pronounced for archaea, and particularly for Marine Group I Thaumarchaeota. Our results also reveal that different microbial components show varying sensitivities to changes in temperature conditions and food supply. We conclude that climate change will primarily affect deep-sea benthic archaea, with important consequences on global biogeochemical cycles, particularly at high latitudes.


Subject(s)
Archaea/growth & development , Bacteria/growth & development , Ecosystem , Biodiversity , Biomass , Climate Change , Geologic Sediments , Seawater/microbiology , Temperature
6.
Front Microbiol ; 7: 473, 2016.
Article in English | MEDLINE | ID: mdl-27092127

ABSTRACT

Most marine bacteria secrete exopolysaccharide (EPS), which is important for bacterial survival in the marine environment. However, it is still unclear whether the self-secreted EPS is involved in marine bacterial motility. Here we studied the role of EPS in the lateral flagella-driven swarming motility of benthic bacterium Pseudoalteromonas sp. SM9913 (SM9913) by a comparison of wild SM9913 and ΔepsT, an EPS synthesis defective mutant. Reduction of EPS production in ΔepsT did not affect the growth rate or the swimming motility, but significantly decreased the swarming motility on a swarming plate, suggesting that the EPS may play a role in SM9913 swarming. However, the expression and assembly of lateral flagella in ΔepsT were not affected. Instead, ΔepsT had a different swarming behavior from wild SM9913. The swarming of ΔepsT did not have an obvious rapid swarming period, and its rate became much lower than that of wild SM9913 after 35 h incubation. An addition of surfactin or SM9913 EPS on the surface of the swarming plate could rescue the swarming level. These results indicate that the self-secreted EPS is required for the swarming of SM9913. This study widens our understanding of the function of the EPS of benthic bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL